Suppr超能文献

分数阶忆阻复值 BAM 神经网络不确定参数与时变时滞的有限时间和固定时间镇定控制器设计。

Controller design for finite-time and fixed-time stabilization of fractional-order memristive complex-valued BAM neural networks with uncertain parameters and time-varying delays.

机构信息

Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Computer Engineering, Avcilar, Istanbul 34320, Turkey.

Department of Mathematics, Thiruvalluvar University, Vellore 632115, Tamil Nadu, India.

出版信息

Neural Netw. 2020 Oct;130:60-74. doi: 10.1016/j.neunet.2020.06.021. Epub 2020 Jul 3.

Abstract

In this paper we investigate controller design problem for finite-time and fixed-time stabilization of fractional-order memristive complex-valued BAM neural networks (FMCVBAMNNs) with uncertain parameters and time-varying delays. By using the Lyapunov theory, differential inclusion theory, and fractional calculus theory, finite-time stabilization condition for fractional-order memristive complex-valued BAM neural networks and the upper bound of the settling time for stabilization are obtained. The nonlinear complex-valued activation functions are split into two (real and imaginary) components. Moreover, the settling time of fixed time stabilization, that does not depend upon the initial values, is merely calculated. A novel criterion for guaranteeing the fixed-time stabilization of FMCVBAMNNs is derived. Our control scheme achieves system stabilization within bounded time and has an advantage in convergence rate. Numerical simulations are furnished to demonstrate the effectiveness of the theoretical analysis.

摘要

本文研究了具有不确定参数和时变时滞的分数阶忆阻复值双向联想记忆神经网络(FMCVBAMNN)的有限时间和固定时间稳定的控制器设计问题。通过使用 Lyapunov 理论、微分包含理论和分数阶微积分理论,得到了分数阶忆阻复值 BAM 神经网络的有限时间稳定条件和稳定的 settling 时间上界。将非线性复值激活函数分解为实部和虚部两个分量。此外,还计算了不依赖于初始值的固定时间稳定的 settling 时间。导出了保证 FMCVBAMNNs 固定时间稳定的新准则。我们的控制方案可以在有界时间内实现系统稳定,并且在收敛速度方面具有优势。数值模拟验证了理论分析的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验