Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas.
Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.
Clin Cancer Res. 2020 Mar 15;26(6):1359-1371. doi: 10.1158/1078-0432.CCR-19-3249. Epub 2019 Dec 12.
Cancer antigen-specific T cells are key components in antitumor immune response, yet their identification in the tumor microenvironment remains challenging, as most cancer antigens are unknown. Recent advance in immunology suggests that similar T-cell receptor (TCR) sequences can be clustered to infer shared antigen specificity. This study aims to identify antigen-specific TCRs from the tumor genomics sequencing data.
We used the TRUST (Tcr Repertoire Utilities for Solid Tissue) algorithm to assemble the TCR hypervariable CDR3 regions from 9,700 bulk tumor RNA-sequencing (RNA-seq) samples, and developed a computational method, iSMART, to group similar TCRs into antigen-specific clusters. Integrative analysis on the TCR clusters with multi-omics datasets was performed to profile cancer-associated T cells and to uncover novel cancer antigens.
Clustered TCRs are associated with signatures of T-cell activation after antigen encounter. We further elucidated the phenotypes of clustered T cells using single-cell RNA-seq data, which revealed a novel subset of tissue-resident memory T-cell population with elevated metabolic status. An exciting application of the TCR clusters is to identify novel cancer antigens, exemplified by our identification of a candidate cancer/testis gene, , through integrated analysis of HLA alleles and genomics data. The target was further validated using vaccination of humanized HLA-A*02:01 mice and ELISpot assay. Finally, we showed that clustered tumor-infiltrating TCRs can differentiate patients with early-stage cancer from healthy donors, using blood TCR repertoire sequencing data, suggesting potential applications in noninvasive cancer detection.
Our analysis on the antigen-specific TCR clusters provides a unique resource for alternative antigen discovery and biomarker identification for cancer immunotherapies.
肿瘤抗原特异性 T 细胞是抗肿瘤免疫反应的关键组成部分,但由于大多数肿瘤抗原未知,其在肿瘤微环境中的鉴定仍然具有挑战性。免疫学的最新进展表明,相似的 T 细胞受体 (TCR) 序列可以聚类,以推断共同的抗原特异性。本研究旨在从肿瘤基因组测序数据中鉴定抗原特异性 TCR。
我们使用 TRUST(Tcr 受体库用于实体组织)算法从 9700 个批量肿瘤 RNA 测序 (RNA-seq) 样本中组装 TCR 高变区 CDR3 区,并开发了一种计算方法 iSMART,将相似的 TCR 分组为抗原特异性簇。对 TCR 簇与多组学数据集进行综合分析,以分析与癌症相关的 T 细胞并发现新的癌症抗原。
聚类的 TCR 与抗原接触后 T 细胞激活的特征相关。我们使用单细胞 RNA-seq 数据进一步阐明了聚类 T 细胞的表型,揭示了具有升高代谢状态的组织驻留记忆 T 细胞新亚群。TCR 簇的一个令人兴奋的应用是鉴定新的癌症抗原,例如通过 HLA 等位基因和基因组数据的综合分析,鉴定候选癌症/睾丸基因 。该靶标进一步通过人类 HLA-A*02:01 小鼠的疫苗接种和 ELISpot 测定进行了验证。最后,我们表明,使用血液 TCR 库测序数据,聚类的肿瘤浸润 TCR 可区分早期癌症患者与健康供体,提示其在非侵入性癌症检测中的潜在应用。
我们对抗原特异性 TCR 簇的分析为癌症免疫疗法的替代抗原发现和生物标志物鉴定提供了独特的资源。