Suppr超能文献

利用机制模型对复杂基因组变异进行临床解读。

Using mechanistic models for the clinical interpretation of complex genomic variation.

机构信息

Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocío, 41013, Sevilla, Spain.

Bioinformatics in RareDiseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013, Sevilla, Spain.

出版信息

Sci Rep. 2019 Dec 12;9(1):18937. doi: 10.1038/s41598-019-55454-7.

Abstract

The sustained generation of genomic data in the last decade has increased the knowledge on the causal mutations of a large number of diseases, especially for highly penetrant Mendelian diseases, typically caused by a unique or a few genes. However, the discovery of causal genes in complex diseases has been far less successful. Many complex diseases are actually a consequence of the failure of complex biological modules, composed by interrelated proteins, which can happen in many different ways, which conferring a multigenic nature to the condition that can hardly be attributed to one or a few genes. We present a mechanistic model, Hipathia, implemented in a web server that allows estimating the effect that mutations, or changes in the expression of genes, have over the whole system of human signaling and the corresponding functional consequences. We show several use cases where we demonstrate how different the ultimate impact of mutations with similar loss-of-function potential can be and how the potential pathological role of a damaged gene can be inferred within the context of a signaling network. The use of systems biology-based approaches, such as mechanistic models, allows estimating the potential impact of loss-of-function mutations occurring in proteins that are part of complex biological interaction networks, such as signaling pathways. This holistic approach provides an elegant alternative to gene-centric approaches that can open new avenues in the interpretation of the genomic variability in complex diseases.

摘要

在过去的十年中,基因组数据的持续产生增加了对大量疾病的因果突变的认识,特别是对于高度外显的孟德尔疾病,这些疾病通常由一个独特或少数几个基因引起。然而,在复杂疾病中发现因果基因的成功率要低得多。许多复杂疾病实际上是复杂生物模块失效的结果,这些模块由相互关联的蛋白质组成,可以通过许多不同的方式发生,从而使疾病具有多基因性质,很难归因于一个或几个基因。我们提出了一个机制模型 Hipathia,它实现了一个网络服务器,可以估计基因突变或基因表达变化对人类信号转导整个系统的影响,以及相应的功能后果。我们展示了几个用例,演示了具有相似功能丧失潜力的突变的最终影响可能有多么不同,以及在信号网络的背景下,可以推断出受损基因的潜在病理作用。基于系统生物学的方法,如机制模型,可以估计发生在复杂生物相互作用网络(如信号通路)中的蛋白质中的功能丧失突变的潜在影响。这种整体方法为以基因为中心的方法提供了一个优雅的替代方案,可以为复杂疾病中基因组变异性的解释开辟新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/6908734/ab05922b81f3/41598_2019_55454_Fig1_HTML.jpg

相似文献

1
Using mechanistic models for the clinical interpretation of complex genomic variation.
Sci Rep. 2019 Dec 12;9(1):18937. doi: 10.1038/s41598-019-55454-7.
2
Interpretation of genomic variants using a unified biological network approach.
PLoS Comput Biol. 2013;9(3):e1002886. doi: 10.1371/journal.pcbi.1002886. Epub 2013 Mar 7.
3
Assessing the impact of mutations found in next generation sequencing data over human signaling pathways.
Nucleic Acids Res. 2015 Jul 1;43(W1):W270-5. doi: 10.1093/nar/gkv349. Epub 2015 Apr 16.
5
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
Gene expression complex networks: synthesis, identification, and analysis.
J Comput Biol. 2011 Oct;18(10):1353-67. doi: 10.1089/cmb.2010.0118. Epub 2011 May 6.
8
Introduction: Cancer Gene Networks.
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.

引用本文的文献

1
SignalingProfiler 2.0 a network-based approach to bridge multi-omics data to phenotypic hallmarks.
NPJ Syst Biol Appl. 2024 Aug 23;10(1):95. doi: 10.1038/s41540-024-00417-6.
2
Population-enriched innate immune variants may identify candidate gene targets at the intersection of cancer and cardio-metabolic disease.
Front Endocrinol (Lausanne). 2024 Mar 21;14:1286979. doi: 10.3389/fendo.2023.1286979. eCollection 2023.
3
drexml: A command line tool and Python package for drug repurposing.
Comput Struct Biotechnol J. 2024 Mar 1;23:1129-1143. doi: 10.1016/j.csbj.2024.02.027. eCollection 2024 Dec.
7
Functional Profiling of Soft Tissue Sarcoma Using Mechanistic Models.
Int J Mol Sci. 2023 Sep 29;24(19):14732. doi: 10.3390/ijms241914732.
8
Crosstalk between Metabolite Production and Signaling Activity in Breast Cancer.
Int J Mol Sci. 2023 Apr 18;24(8):7450. doi: 10.3390/ijms24087450.
9
ESCCdb: A comprehensive database and key regulator exploring platform based on cross dataset comparisons for esophageal squamous cell carcinoma.
Comput Struct Biotechnol J. 2023 Mar 17;21:2119-2128. doi: 10.1016/j.csbj.2023.03.026. eCollection 2023.

本文引用的文献

1
2
MutationDistiller: user-driven identification of pathogenic DNA variants.
Nucleic Acids Res. 2019 Jul 2;47(W1):W114-W120. doi: 10.1093/nar/gkz330.
3
Differential metabolic activity and discovery of therapeutic targets using summarized metabolic pathway models.
NPJ Syst Biol Appl. 2019 Mar 1;5:7. doi: 10.1038/s41540-019-0087-2. eCollection 2019.
5
CADD: predicting the deleteriousness of variants throughout the human genome.
Nucleic Acids Res. 2019 Jan 8;47(D1):D886-D894. doi: 10.1093/nar/gky1016.
6
Gene Expression Integration into Pathway Modules Reveals a Pan-Cancer Metabolic Landscape.
Cancer Res. 2018 Nov 1;78(21):6059-6072. doi: 10.1158/0008-5472.CAN-17-2705. Epub 2018 Aug 22.
8
Predicting the clinical impact of human mutation with deep neural networks.
Nat Genet. 2018 Aug;50(8):1161-1170. doi: 10.1038/s41588-018-0167-z. Epub 2018 Jul 23.
9
Computational Systems Biology Approach for the Study of Rheumatoid Arthritis: From a Molecular Map to a Dynamical Model.
Genom Comput Biol. 2018;4(1). doi: 10.18547/gcb.2018.vol4.iss1.e100050. Epub 2017 Dec 6.
10
Systems medicine disease maps: community-driven comprehensive representation of disease mechanisms.
NPJ Syst Biol Appl. 2018 Jun 2;4:21. doi: 10.1038/s41540-018-0059-y. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验