Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
NPJ Syst Biol Appl. 2024 Aug 23;10(1):95. doi: 10.1038/s41540-024-00417-6.
Unraveling how cellular signaling is remodeled upon perturbation is crucial for understanding disease mechanisms and identifying potential drug targets. In this pursuit, computational tools generating mechanistic hypotheses from multi-omics data have invaluable potential. Here, we present a newly implemented version (2.0) of SignalingProfiler, a multi-step pipeline to draw mechanistic hypotheses on the signaling events impacting cellular phenotypes. SignalingProfiler 2.0 derives context-specific signaling networks by integrating proteogenomic data with the prior knowledge-causal network. This is a freely accessible and flexible tool that incorporates statistical, footprint-based, and graph algorithms to accelerate the integration and interpretation of multi-omics data. Through a benchmarking process on three proof-of-concept studies, we demonstrate the tool's ability to generate hierarchical mechanistic networks recapitulating novel and known perturbed signaling and phenotypic outcomes, in both human and mice contexts. In summary, SignalingProfiler 2.0 addresses the emergent need to derive biologically relevant information from complex multi-omics data by extracting interpretable networks.
阐明细胞信号在受到干扰时是如何重塑的,对于理解疾病机制和确定潜在的药物靶点至关重要。在这方面,能够从多组学数据中生成机制假设的计算工具具有巨大的潜力。在这里,我们介绍了 SignalingProfiler 的一个新版本(2.0),这是一个多步骤的管道,用于针对影响细胞表型的信号事件提出机制假设。SignalingProfiler 2.0 通过将蛋白质基因组学数据与先验知识因果网络集成,推导出特定于上下文的信号网络。这是一个免费访问和灵活的工具,它结合了统计、基于足迹和图的算法,以加速多组学数据的整合和解释。通过对三个概念验证研究的基准测试过程,我们证明了该工具能够生成层次化的机制网络,重现新的和已知的受干扰的信号和表型结果,无论是在人类还是小鼠的背景下。总之,SignalingProfiler 2.0 通过提取可解释的网络,解决了从复杂的多组学数据中提取生物相关信息的新兴需求。