Institut du Cerveau et de la Moelle épinière, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, F-75013, Paris, France.
Institut du Cerveau et de la Moelle épinière, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, F-75013, Paris, France; Epilepsy Unit, Clinical Neurophysiology Department, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France.
Prog Neurobiol. 2020 Feb;185:101733. doi: 10.1016/j.pneurobio.2019.101733. Epub 2019 Dec 10.
We developed a new rodent model of reversible brain anoxia and performed continuous electrocorticographic (ECoG) and intracellular recordings of neocortical neurons to identify in real-time the cellular and network dynamics that successively emerge throughout the dying-to-recovery process. Along with a global decrease in ECoG amplitude, deprivation of oxygen supply resulted in an early surge of beta-gamma activities, accompanied by rhythmic membrane depolarizations and regular firing in pyramidal neurons. ECoG and intracellular signals were then dominated by low-frequency activities which progressively declined towards isoelectric levels. Cortical neurons during the isoelectric state underwent a massive membrane potential depolarizing shift, captured in the ECoG as a large amplitude triphasic wave known as the "wave-of-death" (WoD). This neuronal anoxic depolarization, associated with a block of action potentials and a loss of cell integrative properties, could however be reversed if brain re-oxygenation was rapidly restored (within 2-3.5 min). The subsequent slow repolarization of neocortical neurons resulted in a second identifiable ECoG wave we termed "wave-of-resuscitation" since it inaugurated the progressive regaining of pre-anoxic synaptic and firing activities. These results demonstrate that the WoD is not a biomarker of an irremediable death and unveil the cellular correlates of a novel ECoG wave that may be predictive of a successful recovery. The identification of real-time biomarkers of onset and termination of cell anoxic insult could benefit research on interventional strategies to optimize resuscitation procedures.
我们开发了一种新的可逆转脑缺氧啮齿动物模型,并进行了皮质脑电图(ECoG)和新皮层神经元的细胞内记录,以实时识别细胞和网络动态,这些动态在死亡到恢复过程中相继出现。随着 ECoG 幅度的整体下降,缺氧供应导致β-γ活动的早期激增,伴随着锥体神经元的节律性膜去极化和规则放电。然后,ECoG 和细胞内信号被低频活动所主导,这些活动逐渐向等电水平下降。在等电状态下,皮层神经元经历了一个巨大的膜电位去极化偏移,在 ECoG 中被捕获为一个大振幅三相波,称为“死亡波”(WoD)。这种神经元缺氧去极化与动作电位的阻断和细胞整合特性的丧失有关,但如果大脑迅速重新供氧(在 2-3.5 分钟内),则可以逆转。新皮层神经元的随后缓慢复极化导致了第二个可识别的 ECoG 波,我们称之为“复苏波”,因为它标志着前缺氧突触和放电活动的逐渐恢复。这些结果表明,WoD 不是不可逆转死亡的生物标志物,并揭示了一种新型 ECoG 波的细胞相关性,它可能是成功恢复的预测指标。实时识别细胞缺氧损伤的起始和终止的生物标志物可能有益于研究优化复苏程序的干预策略。