Kawamura Y
Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka, 811-0295, Japan.
Sci Rep. 2019 Dec 13;9(1):19094. doi: 10.1038/s41598-019-55496-x.
This study describes a new two-step process to cool the thermal vibration of microcantilevers. The process combines active mechanical feedback cooling and optical cavity cooling. A micro-Fabry-Perot interferometer, built in-house, is set atop a microcantilever to measure the vibration amplitude, the high optical power density of which induces cavity cooling in the optical cavity. Using a two-step cooling procedure, the equivalent temperature of the thermal vibration of a microcantilever is lowered from room temperature to the theoretical cooling limit of 0.063 K, a much lower temperature than that achieved via simple cavity cooling (18 K), and then by mechanical feedback cooling (0.135 K) obtained for the same type of microcantilevers in previous studies. This experimental demonstration showcases a new type of cooling process of the amplitude of thermal vibration for micro-mechanical resonators to a lower temperature and does not need additional cooling using a conventional cryogenic refrigerator.
本研究描述了一种用于冷却微悬臂梁热振动的新型两步法。该方法结合了主动机械反馈冷却和光学腔冷却。在内部构建的一个微型法布里-珀罗干涉仪放置在微悬臂梁上方,用于测量振动幅度,其高光功率密度会在光学腔内引发腔冷却。采用两步冷却程序,微悬臂梁热振动的等效温度从室温降低至理论冷却极限0.063 K,这一温度比通过简单腔冷却(18 K)以及先前研究中对相同类型微悬臂梁采用机械反馈冷却(0.135 K)所达到的温度低得多。该实验演示展示了一种将微机械谐振器热振动幅度冷却至更低温度的新型冷却过程,且无需使用传统低温制冷机进行额外冷却。