da Silva José A, Netz Paulo A, Meneghetti Mario R
Grupo de Catálise e Reatividade Química - GCaR, Instituto de Química e Biotecnologia , Universidade Federal de Alagoas , Av. Lourival de Melo Mota, s/n, CEP 57072-970 , Maceió , Alagoas Brazil.
Institute of Chemistry - Federal University of the Rio Grande do Sul , Av. Bento Gonçalves, 9500 CEP , 91501-970 , Porto Alegre , Rio Grande do Sul Brazil.
Langmuir. 2020 Jan 14;36(1):257-263. doi: 10.1021/acs.langmuir.9b03235. Epub 2019 Dec 26.
An understanding of the anisotropic growth mechanism of gold nanorods (AuNRs) during colloidal synthesis is critical for controlling the nanocrystal size and shape and thus has implications in tuning the properties for applications in a wide range of research and technology fields. In order to investigate the role of the cetyltrimethylammonium bromide (CTAB) coating in the anisotropic growth mechanism of AuNRs, we used molecular dynamics (MD) simulations and built a computational model that considered explicitly the effect of the curvature of the gold surface on CTAB adsorption and therefore differentiated between the CTAB arrangements on flat and curved surfaces, representing the lateral and tip facets of growing AuNRs, respectively. We verified that on a curved surface, a lower CTAB coverage density and larger intermicellar channels are generated compared to those on a flat surface. Using umbrella sampling simulations, we measured the free energy profile and verified that the environment around a curved surface corresponds to an easier migration from the solution to the gold surface for the [AuBr] species than does a flat surface. Long unbiased molecular dynamics simulations also corroborated the umbrella sampling results. Therefore, the [AuBr] diffusion through the environment of the tips is much more favorable than that in the case of lateral facets. This shows that the surface curvature is an essential component of the anisotropic growth mechanism.
了解金纳米棒(AuNRs)在胶体合成过程中的各向异性生长机制对于控制纳米晶体的尺寸和形状至关重要,因此对于在广泛的研究和技术领域中调整应用性能具有重要意义。为了研究十六烷基三甲基溴化铵(CTAB)涂层在AuNRs各向异性生长机制中的作用,我们使用了分子动力学(MD)模拟并构建了一个计算模型,该模型明确考虑了金表面曲率对CTAB吸附的影响,从而区分了在平坦和弯曲表面上的CTAB排列,分别代表生长中的AuNRs的侧面和尖端小面。我们验证了在弯曲表面上,与平坦表面相比,会产生更低的CTAB覆盖密度和更大的胶束间通道。使用伞形采样模拟,我们测量了自由能分布并验证了弯曲表面周围的环境相比于平坦表面,对于[AuBr]物种而言,对应于从溶液到金表面更容易的迁移。长时间的无偏分子动力学模拟也证实了伞形采样结果。因此,[AuBr]通过尖端环境的扩散比在侧面小面的情况下要有利得多。这表明表面曲率是各向异性生长机制的一个重要组成部分。