文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能雷达传感器:基于生成对抗网络的雷达深度探测图像生成。

AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network.

机构信息

Computer Vision and Remote Sensing Laboratory, University of Maryland, Baltimore, MA 20742, USA.

Center for Remote Sensing of Ice Sheets, University of Kansas, Lawrence, KS 66045, USA.

出版信息

Sensors (Basel). 2019 Dec 12;19(24):5479. doi: 10.3390/s19245479.


DOI:10.3390/s19245479
PMID:31842359
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6960960/
Abstract

Significant resources have been spent in collecting and storing large and heterogeneous radar datasets during expensive Arctic and Antarctic fieldwork. The vast majority of data available is unlabeled, and the labeling process is both time-consuming and expensive. One possible alternative to the labeling process is the use of synthetically generated data with artificial intelligence. Instead of labeling real images, we can generate synthetic data based on arbitrary labels. In this way, training data can be quickly augmented with additional images. In this research, we evaluated the performance of synthetically generated radar images based on modified cycle-consistent adversarial networks. We conducted several experiments to test the quality of the generated radar imagery. We also tested the quality of a state-of-the-art contour detection algorithm on synthetic data and different combinations of real and synthetic data. Our experiments show that synthetic radar images generated by generative adversarial network (GAN) can be used in combination with real images for data augmentation and training of deep neural networks. However, the synthetic images generated by GANs cannot be used solely for training a neural network (training on synthetic and testing on real) as they cannot simulate all of the radar characteristics such as noise or Doppler effects. To the best of our knowledge, this is the first work in creating radar sounder imagery based on generative adversarial network.

摘要

在昂贵的北极和南极实地工作中,已经投入了大量资源来收集和存储大型和异构的雷达数据集。绝大多数可用的数据都是未标记的,而标记过程既耗时又昂贵。标记过程的一种可能替代方法是使用人工智能生成的合成数据。我们可以根据任意标签生成合成数据,而不是对真实图像进行标记。通过这种方式,可以快速用额外的图像扩充训练数据。在这项研究中,我们评估了基于修改后的循环一致性对抗网络生成的合成雷达图像的性能。我们进行了多次实验来测试生成雷达图像的质量。我们还在合成数据以及真实数据和合成数据的不同组合上测试了最先进的轮廓检测算法的质量。我们的实验表明,生成对抗网络 (GAN) 生成的合成雷达图像可与真实图像结合使用,以进行数据扩充和深度神经网络训练。但是,GAN 生成的合成图像不能仅用于训练神经网络(在合成数据上进行训练,在真实数据上进行测试),因为它们无法模拟所有雷达特征,例如噪声或多普勒效应。据我们所知,这是首次基于生成对抗网络创建雷达探测仪图像的工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/d07267378c93/sensors-19-05479-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/20a57b1ccd92/sensors-19-05479-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/e57a65e31df4/sensors-19-05479-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/43314d0eb8c4/sensors-19-05479-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/46c8e371d2a0/sensors-19-05479-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/9dee1ac6fa00/sensors-19-05479-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/910809285eb6/sensors-19-05479-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/72f0f4fa1619/sensors-19-05479-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/dc5d0ade0c55/sensors-19-05479-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/4092d3a8f9ea/sensors-19-05479-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/d07267378c93/sensors-19-05479-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/20a57b1ccd92/sensors-19-05479-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/e57a65e31df4/sensors-19-05479-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/43314d0eb8c4/sensors-19-05479-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/46c8e371d2a0/sensors-19-05479-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/9dee1ac6fa00/sensors-19-05479-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/910809285eb6/sensors-19-05479-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/72f0f4fa1619/sensors-19-05479-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/dc5d0ade0c55/sensors-19-05479-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/4092d3a8f9ea/sensors-19-05479-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/6960960/d07267378c93/sensors-19-05479-g010.jpg

相似文献

[1]
AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network.

Sensors (Basel). 2019-12-12

[2]
Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.

Multimed Tools Appl. 2023-5-20

[3]
Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review.

JMIR Med Inform. 2022-6-29

[4]
A Comparative Analysis of the Novel Conditional Deep Convolutional Neural Network Model, Using Conditional Deep Convolutional Generative Adversarial Network-Generated Synthetic and Augmented Brain Tumor Datasets for Image Classification.

Brain Sci. 2024-5-30

[5]
SynthEye: Investigating the Impact of Synthetic Data on Artificial Intelligence-assisted Gene Diagnosis of Inherited Retinal Disease.

Ophthalmol Sci. 2022-11-22

[6]
Parallel Connected Generative Adversarial Network with Quadratic Operation for SAR Image Generation and Application for Classification.

Sensors (Basel). 2019-2-19

[7]
Breast cancer detection using synthetic mammograms from generative adversarial networks in convolutional neural networks.

J Med Imaging (Bellingham). 2019-7

[8]
Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence: Application to Retinopathy of Prematurity Diagnosis.

Ophthalmol Sci. 2022-2-11

[9]
Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks.

Ophthalmol Sci. 2021-11-16

[10]
Augmentation of Doppler Radar Data Using Generative Adversarial Network for Human Motion Analysis.

Healthc Inform Res. 2019-10

本文引用的文献

[1]
Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval.

IEEE Trans Image Process. 2018-10-31

[2]
Deep Count: Fruit Counting Based on Deep Simulated Learning.

Sensors (Basel). 2017-4-20

[3]
Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features.

PLoS One. 2016-3-17

[4]
Contour-based corner detection and classification by using mean projection transform.

Sensors (Basel). 2014-2-28

[5]
Learning hierarchical features for scene labeling.

IEEE Trans Pattern Anal Mach Intell. 2013-8

[6]
Contour detection based on nonclassical receptive field inhibition.

IEEE Trans Image Process. 2003

[7]
Image quality assessment: from error visibility to structural similarity.

IEEE Trans Image Process. 2004-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索