Computer Vision and Remote Sensing Laboratory, University of Maryland, Baltimore, MA 20742, USA.
Center for Remote Sensing of Ice Sheets, University of Kansas, Lawrence, KS 66045, USA.
Sensors (Basel). 2019 Dec 12;19(24):5479. doi: 10.3390/s19245479.
Significant resources have been spent in collecting and storing large and heterogeneous radar datasets during expensive Arctic and Antarctic fieldwork. The vast majority of data available is unlabeled, and the labeling process is both time-consuming and expensive. One possible alternative to the labeling process is the use of synthetically generated data with artificial intelligence. Instead of labeling real images, we can generate synthetic data based on arbitrary labels. In this way, training data can be quickly augmented with additional images. In this research, we evaluated the performance of synthetically generated radar images based on modified cycle-consistent adversarial networks. We conducted several experiments to test the quality of the generated radar imagery. We also tested the quality of a state-of-the-art contour detection algorithm on synthetic data and different combinations of real and synthetic data. Our experiments show that synthetic radar images generated by generative adversarial network (GAN) can be used in combination with real images for data augmentation and training of deep neural networks. However, the synthetic images generated by GANs cannot be used solely for training a neural network (training on synthetic and testing on real) as they cannot simulate all of the radar characteristics such as noise or Doppler effects. To the best of our knowledge, this is the first work in creating radar sounder imagery based on generative adversarial network.
在昂贵的北极和南极实地工作中,已经投入了大量资源来收集和存储大型和异构的雷达数据集。绝大多数可用的数据都是未标记的,而标记过程既耗时又昂贵。标记过程的一种可能替代方法是使用人工智能生成的合成数据。我们可以根据任意标签生成合成数据,而不是对真实图像进行标记。通过这种方式,可以快速用额外的图像扩充训练数据。在这项研究中,我们评估了基于修改后的循环一致性对抗网络生成的合成雷达图像的性能。我们进行了多次实验来测试生成雷达图像的质量。我们还在合成数据以及真实数据和合成数据的不同组合上测试了最先进的轮廓检测算法的质量。我们的实验表明,生成对抗网络 (GAN) 生成的合成雷达图像可与真实图像结合使用,以进行数据扩充和深度神经网络训练。但是,GAN 生成的合成图像不能仅用于训练神经网络(在合成数据上进行训练,在真实数据上进行测试),因为它们无法模拟所有雷达特征,例如噪声或多普勒效应。据我们所知,这是首次基于生成对抗网络创建雷达探测仪图像的工作。
Sensors (Basel). 2019-12-12
Multimed Tools Appl. 2023-5-20
J Med Imaging (Bellingham). 2019-7
Healthc Inform Res. 2019-10
IEEE Trans Image Process. 2018-10-31
Sensors (Basel). 2017-4-20
Sensors (Basel). 2014-2-28
IEEE Trans Pattern Anal Mach Intell. 2013-8
IEEE Trans Image Process. 2003
IEEE Trans Image Process. 2004-4