Suppr超能文献

基于非经典感受野抑制的轮廓检测。

Contour detection based on nonclassical receptive field inhibition.

机构信息

Institute of Mathematics and Computing Science, University of Groningen, 9700 AV Groningen, The Netherlands.

出版信息

IEEE Trans Image Process. 2003;12(7):729-39. doi: 10.1109/TIP.2003.814250.

Abstract

We propose a biologically motivated method, called nonclassical receptive field (non-CRF) inhibition (more generally, surround inhibition or suppression), to improve contour detection in machine vision. Non-CRF inhibition is exhibited by 80% of the orientation-selective neurons in the primary visual cortex of monkeys and has been shown to influence human visual perception as well. Essentially, the response of an edge detector at a certain point is suppressed by the responses of the operator in the region outside the supported area. We combine classical edge detection with isotropic and anisotropic inhibition, both of which have counterparts in biology. We also use a biologically motivated method (the Gabor energy operator) for edge detection. The resulting operator responds strongly to isolated lines, edges, and contours, but exhibits weak or no response to edges that are part of texture. We use natural images with associated ground truth contour maps to assess the performance of the proposed operator for detecting contours while suppressing texture edges. Our method enhances contour detection in cluttered visual scenes more effectively than classical edge detectors used in machine vision (Canny edge detector). Therefore, the proposed operator is more useful for contour-based object recognition tasks, such as shape comparison, than traditional edge detectors, which do not distinguish between contour and texture edges. Traditional edge detection algorithms can, however, also be extended with surround suppression. This study contributes also to the understanding of inhibitory mechanisms in biology.

摘要

我们提出了一种基于生物学原理的方法,称为非经典感受野(non-CRF)抑制(更一般地称为环绕抑制或抑制),以改善机器视觉中的轮廓检测。80%的猴子初级视觉皮层中的方向选择性神经元表现出非经典感受野抑制,并且已经证明它也会影响人类的视觉感知。本质上,在某个点的边缘检测器的响应被支持区域之外的运算符的响应抑制。我们将经典边缘检测与各向同性和各向异性抑制相结合,这两者在生物学中都有对应物。我们还使用一种基于生物学原理的方法(Gabor 能量运算符)进行边缘检测。生成的运算符强烈响应孤立的线、边缘和轮廓,但对属于纹理的边缘表现出较弱或无响应。我们使用带有相关地面真实轮廓图的自然图像来评估所提出的运算符在抑制纹理边缘的同时检测轮廓的性能。与机器视觉中使用的经典边缘检测器(Canny 边缘检测器)相比,我们的方法更有效地增强了杂乱视觉场景中的轮廓检测。因此,与不区分轮廓和纹理边缘的传统边缘检测器相比,所提出的运算符更有益于基于轮廓的对象识别任务,例如形状比较。然而,传统的边缘检测算法也可以通过环绕抑制来扩展。这项研究也有助于理解生物学中的抑制机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验