Cole Theresa L, Dutoit Ludovic, Dussex Nicolas, Hart Tom, Alexander Alana, Younger Jane L, Clucas Gemma V, Frugone María José, Cherel Yves, Cuthbert Richard, Ellenberg Ursula, Fiddaman Steven R, Hiscock Johanna, Houston David, Jouventin Pierre, Mattern Thomas, Miller Gary, Miskelly Colin, Nolan Paul, Polito Michael J, Quillfeldt Petra, Ryan Peter G, Smith Adrian, Tennyson Alan J D, Thompson David, Wienecke Barbara, Vianna Juliana A, Waters Jonathan M
Department of Zoology, University of Otago, Dunedin 9054, New Zealand.
Long Term Ecology Lab, Manaaki Whenua Landcare Research, Lincoln, Canterbury 7640, New Zealand.
Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26690-26696. doi: 10.1073/pnas.1904048116. Epub 2019 Dec 16.
Climate shifts are key drivers of ecosystem change. Despite the critical importance of Antarctica and the Southern Ocean for global climate, the extent of climate-driven ecological change in this region remains controversial. In particular, the biological effects of changing sea ice conditions are poorly understood. We hypothesize that rapid postglacial reductions in sea ice drove biological shifts across multiple widespread Southern Ocean species. We test for demographic shifts driven by climate events over recent millennia by analyzing population genomic datasets spanning 3 penguin genera (, , and ). Demographic analyses for multiple species (macaroni/royal, eastern rockhopper, Adélie, gentoo, king, and emperor) currently inhabiting southern coastlines affected by heavy sea ice conditions during the Last Glacial Maximum (LGM) yielded genetic signatures of near-simultaneous population expansions associated with postglacial warming. Populations of the ice-adapted emperor penguin are inferred to have expanded slightly earlier than those of species requiring ice-free terrain. These concerted high-latitude expansion events contrast with relatively stable or declining demographic histories inferred for 4 penguin species (northern rockhopper, western rockhopper, Fiordland crested, and Snares crested) that apparently persisted throughout the LGM in ice-free habitats. Limited genetic structure detected in all ice-affected species across the vast Southern Ocean may reflect both rapid postglacial colonization of subantarctic and Antarctic shores, in addition to recent genetic exchange among populations. Together, these analyses highlight dramatic, ecosystem-wide responses to past Southern Ocean climate change and suggest potential for further shifts as warming continues.
气候变化是生态系统变化的关键驱动因素。尽管南极和南大洋对全球气候至关重要,但该地区由气候驱动的生态变化程度仍存在争议。特别是,海冰条件变化的生物学影响尚不清楚。我们假设,冰期后海冰的迅速减少推动了南大洋多种广泛分布物种的生物转移。我们通过分析跨越3个企鹅属(、和)的种群基因组数据集,来检验近几千年来气候事件驱动的种群变化。对目前栖息在末次盛冰期(LGM)受重海冰条件影响的南部海岸线的多个物种(通心粉/皇家企鹅、东部跳岩企鹅、阿德利企鹅、巴布亚企鹅、帝企鹅和王企鹅)进行的种群分析,得出了与冰期后变暖相关的近乎同时发生的种群扩张的遗传特征。适应冰面环境的帝企鹅种群的扩张时间推断比需要无冰地形的物种稍早。这些协同的高纬度扩张事件与4种企鹅(北部跳岩企鹅、西部跳岩企鹅、峡湾冠企鹅和斯奈尔斯冠企鹅)相对稳定或下降的种群历史形成对比,这几种企鹅显然在整个末次盛冰期都在无冰栖息地生存。在整个广阔的南大洋所有受冰影响的物种中检测到的有限遗传结构,可能既反映了亚南极和南极海岸冰期后迅速的殖民化,也反映了种群间最近的基因交流。总之,这些分析突出了过去南大洋气候变化在整个生态系统范围内的显著响应,并表明随着变暖持续,可能会有进一步的变化。