Suppr超能文献

运动神经元:用于时域运动单位分析的开源R工具箱。

motoRneuron: an open-source R toolbox for time-domain motor unit analyses.

作者信息

Tweedell Andrew J, Tenan Matthew S

机构信息

Human Research and Engineering Directorate, United States Army Research Laboratory, Aberdeen Proving Ground, MD, United States of America.

Defense Health Agency, Falls Church, VA, United States of America.

出版信息

PeerJ. 2019 Dec 10;7:e7907. doi: 10.7717/peerj.7907. eCollection 2019.

Abstract

Motor unit synchronization is the tendency of motor neurons and their associated muscle fibers to discharge near-simultaneously. It has been theorized as a control mechanism for force generation by common excitatory inputs to these motor neurons. Magnitude of synchronization is calculated from peaks in cross-correlation histograms between motor unit discharge trains. However, there are many different methods for detecting these peaks and even more indices for calculating synchronization from them. Methodology is diverse, typically laboratory-specific and requires expensive software, like Matlab or LabView. This lack of standardization makes it difficult to draw definitive conclusions about motor unit synchronization. A free, open-source toolbox, "motoRneuron", for the R programming language, has been developed which contains functions for calculating time domain synchronization using different methods found in the literature. The objective of this paper is to detail the toolbox's functionality and present a case study showing how the same synchronization index can differ when different methods are used to compute it. A pair of motor unit action potential trains were collected from the forearm during a isometric finger flexion task using fine wire electromyography. The motoRneuron package was used to analyze the discharge time of the motor units for time-domain synchronization. The primary function "mu_synch" automatically performed the cross-correlation analysis using three different peak detection methods, the cumulative sum method, the -score method, and a subjective visual method. As function parameters defined by the user, only first order recurrence intervals were calculated and a 1 ms bin width was used to create the cross correlation histogram. Output from the function were six common synchronization indices, the common input strength (CIS), ', ' - 1, E, S, and Synch Index. In general, there was a high degree of synchronization between the two motor units. However, there was a varying degree of synchronization between methods. For example, the widely used CIS index, which represents a rate of synchronized discharges, shows a 45% difference between the visual and -score methods. This singular example demonstrates how a lack of consensus in motor unit synchronization methodologies may lead to substantially differing results between studies. The motoRneuron toolbox provides researchers with a standard interface and software to examine time-domain motor unit synchronization.

摘要

运动单位同步是指运动神经元及其相关肌纤维近乎同时放电的倾向。从理论上讲,它是一种通过对这些运动神经元的共同兴奋性输入来控制力量产生的机制。同步程度是根据运动单位放电序列之间互相关直方图中的峰值来计算的。然而,检测这些峰值有许多不同的方法,从这些峰值计算同步性的指标甚至更多。方法多种多样,通常是特定于实验室的,并且需要像Matlab或LabView这样的昂贵软件。这种缺乏标准化的情况使得难以就运动单位同步得出明确的结论。已经开发了一个用于R编程语言的免费开源工具箱“motoRneuron”,它包含使用文献中发现的不同方法计算时域同步性的函数。本文的目的是详细介绍该工具箱的功能,并展示一个案例研究,说明当使用不同方法计算相同的同步指标时,该指标可能会有所不同。在等长手指屈曲任务期间,使用细针肌电图从前臂采集了一对运动单位动作电位序列。使用motoRneuron软件包分析运动单位的放电时间以进行时域同步。主要函数“mu_synch”使用三种不同的峰值检测方法自动执行互相关分析,即累积和方法、z分数方法和主观视觉方法。作为用户定义的函数参数,只计算了一阶复发间隔,并使用1毫秒的时间间隔宽度来创建互相关直方图。该函数的输出是六个常见的同步指标,即共同输入强度(CIS)、'、'-1、E、S和同步指数。一般来说,两个运动单位之间存在高度同步。然而,不同方法之间的同步程度有所不同。例如,广泛使用的CIS指数表示同步放电的速率,在视觉方法和z分数方法之间显示出45%的差异。这个单一的例子表明,运动单位同步方法缺乏一致性可能会导致不同研究之间的结果存在显著差异。motoRneuron工具箱为研究人员提供了一个标准接口和软件,用于检查时域运动单位同步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e681/6910107/c78c171f5af1/peerj-07-7907-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验