Goetschalckx Lore, Wagemans Johan
Brain & Cognition, KU Leuven, Leuven, Belgium.
PeerJ. 2019 Dec 12;7:e8169. doi: 10.7717/peerj.8169. eCollection 2019.
Images differ in their memorability in consistent ways across observers. What makes an image memorable is not fully understood to date. Most of the current insight is in terms of high-level semantic aspects, related to the content. However, research still shows consistent differences within semantic categories, suggesting a role for factors at other levels of processing in the visual hierarchy. To aid investigations into this role as well as contributions to the understanding of image memorability more generally, we present MemCat. MemCat is a category-based image set, consisting of 10K images representing five broader, memorability-relevant categories (animal, food, landscape, sports, and vehicle) and further divided into subcategories (e.g., bear). They were sampled from existing source image sets that offer bounding box annotations or more detailed segmentation masks. We collected memorability scores for all 10 K images, each score based on the responses of on average 99 participants in a repeat-detection memory task. Replicating previous research, the collected memorability scores show high levels of consistency across observers. Currently, MemCat is the second largest memorability image set and the largest offering a category-based structure. MemCat can be used to study the factors underlying the variability in image memorability, including the variability within semantic categories. In addition, it offers a new benchmark dataset for the automatic prediction of memorability scores (e.g., with convolutional neural networks). Finally, MemCat allows the study of neural and behavioral correlates of memorability while controlling for semantic category.
不同观察者对图像的记忆程度存在一致的差异。迄今为止,图像令人难忘的原因尚未完全明了。目前的大多数见解都集中在与内容相关的高层次语义方面。然而,研究仍表明语义类别内部存在一致的差异,这表明视觉层次结构中其他处理层次的因素也发挥了作用。为了帮助研究这一作用以及更全面地理解图像记忆性,我们推出了MemCat。MemCat是一个基于类别的图像集,由10000张图像组成,代表五个更宽泛的、与记忆性相关的类别(动物、食物、风景、体育和车辆),并进一步细分为子类别(如熊)。这些图像是从现有的提供边界框注释或更详细分割掩码的源图像集中采样而来的。我们收集了所有10000张图像的记忆分数,每个分数基于在重复检测记忆任务中平均99名参与者的回答。重复之前的研究,收集到的记忆分数在不同观察者之间显示出高度的一致性。目前,MemCat是第二大记忆性图像集,也是最大的具有基于类别结构的图像集。MemCat可用于研究图像记忆性变化背后的因素,包括语义类别内部的变化。此外,它为记忆分数的自动预测(例如,使用卷积神经网络)提供了一个新的基准数据集。最后,MemCat允许在控制语义类别的同时研究记忆性的神经和行为相关性。