Suppr超能文献

整合标准降水指数和归一化植被指数用于斯威士兰的近实时干旱监测。

Integrating Standard Precipitation Index and Normalised Difference Vegetation Index for near-real-time drought monitoring in Eswatini.

作者信息

Mlenga Daniel H, Jordaan Andries J, Mandebvu Brian

机构信息

Disaster Management Training and Education Centre for Africa, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa.

Institute of Development Studies, National University of Science and Technology, Bulawayo, Zimbabwe.

出版信息

Jamba. 2019 Dec 12;11(1):917. doi: 10.4102/jamba.v11i1.917. eCollection 2019.

Abstract

Eswatini, as the rest of southern Africa, is being frequented by drought over the last decade, and modelling experts are predicting that drought years will become more and severe. The expected increase in extreme climatic events makes the use of drought indices essential for drought monitoring and early warning. To enable Eswatini to better prepare, analyse and respond to drought, this study analysed the use of Normalised Difference Vegetation Index (NDVI) and Standard Precipitation Index (SPI) for near-real-time drought monitoring through the development of a model for drought severity. Meteorological stations across all agro-ecological zones with data for the period 1986-2017 were selected for analysis. The SPI computation was achieved through DrinC software. Primary NDVI data sources were CHIRPS gridded rainfall dataset and the MODIS NDVI CMG data. Results of the 3-month SPI indicated that moderate droughts were experienced in 1990/1991, 2005/2006, 2011/2012, 2012/2013 and 2015/2016. The Highveld and Middleveld had the lowest drought occurrence percentage of 3.3%, whereas the likelihood of having a moderate, severe and extreme drought was higher in the Lowveld. The study determined a positive correlation between the SPI and the NDVI at 3-month time scale, and a value of (drought severity) greater than 0.54 indicated a significant dry spell and could be used as a drought trigger threshold for early warning. The combined use of NDVI and SPI was deemed capable of providing a near-real-time indicator for drought conditions allowing planners to provide timely information for drought preparedness, mitigation and response planning, thereby helping to lower the eventual drought relief costs, protect food security and reduce the humanitarian impact on the population.

摘要

与南部非洲其他地区一样,斯威士兰在过去十年中频繁遭受干旱,建模专家预测干旱年份将变得更加频繁和严重。极端气候事件的预期增加使得使用干旱指数对于干旱监测和预警至关重要。为了使斯威士兰能够更好地准备、分析和应对干旱,本研究通过建立干旱严重程度模型,分析了归一化植被指数(NDVI)和标准降水指数(SPI)在近实时干旱监测中的应用。选择了所有农业生态区有1986 - 2017年数据的气象站进行分析。SPI的计算通过DrinC软件实现。NDVI的主要数据源是CHIRPS网格化降雨数据集和MODIS NDVI CMG数据。3个月SPI的结果表明,在1990/1991年、2005/2006年、2011/2012年、2012/2013年和2015/2016年经历了中度干旱。高海拔地区和中海拔地区干旱发生百分比最低,为3.3%,而低海拔地区发生中度、重度和极端干旱的可能性更高。该研究确定了3个月时间尺度上SPI与NDVI之间存在正相关,且干旱严重程度值大于0.54表明出现显著干旱期,可作为干旱预警触发阈值。NDVI和SPI的联合使用被认为能够提供干旱状况的近实时指标,使规划者能够为干旱准备、缓解和应对规划提供及时信息,从而有助于降低最终的干旱救济成本、保障粮食安全并减少对人口的人道主义影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9e/6909412/baf8bf1d56d2/JAMBA-11-917-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验