School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
Department of Cardiology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, 100, Haining Road, Shanghai, 200080, People's Republic of China.
J Med Syst. 2019 Dec 18;44(2):35. doi: 10.1007/s10916-019-1511-2.
With age, our blood vessels are prone to aging, which induces cardiovascular disease. As an important basis for diagnosing heart disease and evaluating heart function, the electrocardiogram (ECG) records cardiac physiological electrical activity. Abnormalities in cardiac physiological activity are directly reflected in the ECG. Thus, ECG research is conducive to heart disease diagnosis. Considering the complexity of arrhythmia detection, we present an improved convolutional neural network (CNN) model for accurate classification. Compared with the traditional machine learning methods, CNN requires no additional feature extraction steps due to the automatic feature processing layers. In this paper, an improved CNN is proposed to automatically classify the heartbeat of arrhythmia. Firstly, all the heartbeats are divided from the original signals. After segmentation, the ECG heartbeats can be inputted into the first convolutional layers. In the proposed structure, kernels with different sizes are used in each convolution layer, which takes full advantage of the features in different scales. Then a max-pooling layer followed. The outputs of the last pooling layer are merged and as the input to fully-connected layers. Our experiment is in accordance with the AAMI inter-patient standard, which included normal beats (N), supraventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F), and unknown beats (Q). For verification, the MIT arrhythmia database is introduced to confirm the accuracy of the proposed method, then, comparative experiments are conducted. The experiment demonstrates that our proposed method has high performance for arrhythmia detection, the accuracy is 99.06%. When properly trained, the proposed improved CNN model can be employed as a tool to automatically detect different kinds of arrhythmia from ECG.
随着年龄的增长,我们的血管容易老化,从而导致心血管疾病。心电图(ECG)记录心脏的生理电活动,是诊断心脏病和评估心脏功能的重要依据。心脏生理活动的异常直接反映在心电图上。因此,心电图研究有助于心脏病的诊断。考虑到心律失常检测的复杂性,我们提出了一种改进的卷积神经网络(CNN)模型,用于进行准确的分类。与传统的机器学习方法相比,由于 CNN 具有自动特征处理层,因此不需要额外的特征提取步骤。在本文中,提出了一种改进的 CNN 来自动分类心律失常的心跳。首先,从原始信号中划分出所有的心跳。在分割后,将 ECG 心跳输入到第一层卷积层。在所提出的结构中,每个卷积层使用不同大小的核,充分利用不同尺度的特征。然后是一个最大池化层。最后一个池化层的输出被合并,并作为全连接层的输入。我们的实验符合 AAMI 患者间标准,包括正常心跳(N)、室上性异位心跳(S)、室性异位心跳(V)、融合心跳(F)和未知心跳(Q)。为了验证,引入了 MIT 心律失常数据库来确认所提出方法的准确性,然后进行了对比实验。实验表明,所提出的方法对心律失常检测具有很高的性能,准确率为 99.06%。在经过适当的训练后,所提出的改进的 CNN 模型可以作为一种工具,自动从 ECG 中检测不同类型的心律失常。