Suppr超能文献

基于短程单导联心电图记录的房颤分类:2017年生理网/心脏病学计算挑战赛

AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge 2017.

作者信息

Clifford Gari D, Liu Chengyu, Moody Benjamin, Lehman Li-Wei H, Silva Ikaro, Li Qiao, Johnson A E, Mark Roger G

机构信息

Department of Biomedical Informatics, Emory University, Atlanta, USA.

Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA.

出版信息

Comput Cardiol (2010). 2017 Sep;44. doi: 10.22489/CinC.2017.065-469. Epub 2018 Apr 5.

Abstract

The PhysioNet/Computing in Cardiology (CinC) Challenge 2017 focused on differentiating AF from noise, normal or other rhythms in short term (from 9-61 s) ECG recordings performed by patients. A total of 12,186 ECGs were used: 8,528 in the public training set and 3,658 in the private hidden test set. Due to the high degree of inter-expert disagreement between a significant fraction of the expert labels we implemented a mid-competition bootstrap approach to expert relabeling of the data, levering the best performing Challenge entrants' algorithms to identify contentious labels. A total of 75 independent teams entered the Challenge using a variety of traditional and novel methods, ranging from random forests to a deep learning approach applied to the raw data in the spectral domain. Four teams won the Challenge with an equal high F1 score (averaged across all classes) of 0.83, although the top 11 algorithms scored within 2% of this. A combination of 45 algorithms identified using LASSO achieved an F1 of 0.87, indicating that a voting approach can boost performance.

摘要

2017年生理网/心脏病学计算(CinC)挑战赛聚焦于在患者进行的短期(9至61秒)心电图记录中,区分房颤与噪声、正常心律或其他心律。总共使用了12186份心电图:8528份用于公共训练集,3658份用于私有隐藏测试集。由于很大一部分专家标注之间存在高度的专家间分歧,我们在比赛中期采用了一种自采样法对数据进行专家重新标注,利用表现最佳的挑战赛参赛团队的算法来识别有争议的标注。共有75个独立团队使用了从随机森林到应用于频谱域原始数据的深度学习方法等各种传统和新颖方法参加了挑战赛。四个团队以0.83的同等高F1分数(在所有类别上平均)赢得了挑战赛,尽管排名前11的算法得分在该分数的2%以内。使用套索算法识别出的45种算法的组合实现了0.87的F1分数,这表明投票方法可以提高性能。

相似文献

1
AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge 2017.
Comput Cardiol (2010). 2017 Sep;44. doi: 10.22489/CinC.2017.065-469. Epub 2018 Apr 5.
3
You Snooze, You Win: the PhysioNet/Computing in Cardiology Challenge 2018.
Comput Cardiol (2010). 2018 Sep;45. doi: 10.22489/cinc.2018.049. Epub 2019 Jun 24.
5
Cardiac anomaly detection based on time and frequency domain features using tree-based classifiers.
Physiol Meas. 2018 Oct 30;39(11):114001. doi: 10.1088/1361-6579/aae13e.
6
Classification of 12-lead ECGs: the PhysioNet/Computing in Cardiology Challenge 2020.
Physiol Meas. 2021 Jan 1;41(12):124003. doi: 10.1088/1361-6579/abc960.
9
A support vector machine approach for AF classification from a short single-lead ECG recording.
Physiol Meas. 2018 Jun 25;39(6):064004. doi: 10.1088/1361-6579/aac7aa.
10
Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings.
J Electrocardiol. 2018 Nov-Dec;51(6S):S18-S21. doi: 10.1016/j.jelectrocard.2018.08.008. Epub 2018 Aug 10.

引用本文的文献

1
Sparse learned kernels for interpretable and efficient medical time series processing.
Nat Mach Intell. 2024 Oct;6(10):1132-1144. doi: 10.1038/s42256-024-00898-4. Epub 2024 Sep 18.
2
Interpretable Deep Learning Models for Arrhythmia Classification Based on ECG Signals Using PTB-X Dataset.
Diagnostics (Basel). 2025 Aug 4;15(15):1950. doi: 10.3390/diagnostics15151950.
3
An Electrocardiogram Foundation Model Built on over 10 Million Recordings.
NEJM AI. 2025 Jul;2(7). doi: 10.1056/aioa2401033. Epub 2025 Jun 26.
5
Robust screening of atrial fibrillation with distribution classification.
Sci Rep. 2025 Jul 22;15(1):26582. doi: 10.1038/s41598-025-10090-2.
6
Automated detection of non-physiological artifacts on ECG signal: UK Biobank and CRIC.
Comput Biol Med. 2025 Jul 21;196(Pt B):110787. doi: 10.1016/j.compbiomed.2025.110787.
7
Atrial Fibrillation and Atrial Flutter Detection Using Deep Learning.
Sensors (Basel). 2025 Jul 1;25(13):4109. doi: 10.3390/s25134109.
8
Detection of Atrial Fibrillation in Holter ECG Recordings by ECHOView Images: A Deep Transfer Learning Study.
Diagnostics (Basel). 2025 Mar 28;15(7):865. doi: 10.3390/diagnostics15070865.
9
Cross-device federated unsupervised learning for the detection of anomalies in single-lead electrocardiogram signals.
PLOS Digit Health. 2025 Apr 7;4(4):e0000793. doi: 10.1371/journal.pdig.0000793. eCollection 2025 Apr.
10
Deep learning-based prediction of atrial fibrillation from polar transformed time-frequency electrocardiogram.
PLoS One. 2025 Mar 10;20(3):e0317630. doi: 10.1371/journal.pone.0317630. eCollection 2025.

本文引用的文献

1
Atrial fibrillation.
Nat Rev Dis Primers. 2016 Mar 31;2:16016. doi: 10.1038/nrdp.2016.16.
2
Crowd-sourced annotation of ecg signals using contextual information.
Ann Biomed Eng. 2014 Apr;42(4):871-84. doi: 10.1007/s10439-013-0964-6. Epub 2013 Dec 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验