Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, and School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China. Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China.
Nanotechnology. 2020 Apr 10;31(15):155401. doi: 10.1088/1361-6528/ab6433. Epub 2019 Dec 19.
Electrode materials that can function well in both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) are desirable for electrochemical energy storage applications, especially under high rate. In this work, a three-dimensional (3D) mesoporous γ-FeO@carbon nanofiber (γ-FeO@CNF) mat has been successfully synthesized by sol-gel based electrospinning and carbonization. It delivers a specific capacity of 820 mAh g at 0.5 C after 250 cycles, 430 mAh g at 6 C after 1000 cycles, and 222 mAh g at ultrahigh rate of 60 C for LIBs, while for SIBs it delivers a specific capacity of 360 mAh g at 1 C after 1000 cycles and 130 mAh g at 60 C. Besides, the result of ex situ microstructure examination shows the polycrystalline nature of γ-FeO nanoparticle still exists in LIB even after 1000 cycles, while it vanishes in SIB, suggesting that the relatively larger volume expansion occurred during Na insertion/deinsertion, resulting in pulverization of the particles. The CNFs maintained their pristine 3D network structure after the charge/discharge, which demonstrated the critical role of a robust conductive electrode in promoting fast Li/Na transportation. More importantly, they act as an electrical bridge between Li/Na and γ-FeO nanoparticles, therefore suppressing the cell impedance growth and γ-FeO volume expansion, resulting in the enhancement in both cyclic and rate capability.
用于电化学储能应用的电极材料,在高倍率下,在锂离子电池 (LIBs) 和钠离子电池 (SIBs) 中都能很好地工作是理想的。在这项工作中,通过基于溶胶-凝胶的静电纺丝和碳化成功合成了三维 (3D) 介孔 γ-FeO@碳纤维 (γ-FeO@CNF) 毡。它在 0.5 C 时具有 250 次循环后的 820 mAh g 的比容量,在 6 C 时具有 1000 次循环后的 430 mAh g 的比容量,在 LIB 中具有超高 60 C 的比容量为 222 mAh g,而对于 SIB,在 1 C 时具有 1000 次循环后的 360 mAh g 的比容量,在 60 C 时具有 130 mAh g 的比容量。此外,原位微观结构检查的结果表明,即使在 1000 次循环后,多晶 γ-FeO 纳米颗粒的性质仍然存在于 LIB 中,而在 SIB 中则消失,这表明在 Na 插入/脱插过程中发生了相对较大的体积膨胀,导致颗粒粉碎。在充放电后,CNF 保持其原始的 3D 网络结构,这表明坚固的导电电极在促进快速 Li/Na 传输中起着关键作用。更重要的是,它们充当 Li/Na 和 γ-FeO 纳米颗粒之间的电桥,从而抑制了电池阻抗的增长和 γ-FeO 体积的膨胀,从而提高了循环和倍率性能。