Suppr超能文献

数据驱动的多尺度建模揭示了代谢耦联在酵母菌落时空生长动力学中的作用。

Data-driven multiscale modeling reveals the role of metabolic coupling for the spatio-temporal growth dynamics of yeast colonies.

机构信息

Department of Computer Science, Aalto University, P.O.Box 15400, Aalto, FI-00076, Finland.

Pacific Northwest Research Institute, 720 Broadway, Seattle, WA, 98122, USA.

出版信息

BMC Mol Cell Biol. 2019 Dec 19;20(1):59. doi: 10.1186/s12860-019-0234-z.

Abstract

BACKGROUND

Multicellular entities like mammalian tissues or microbial biofilms typically exhibit complex spatial arrangements that are adapted to their specific functions or environments. These structures result from intercellular signaling as well as from the interaction with the environment that allow cells of the same genotype to differentiate into well-organized communities of diversified cells. Despite its importance, our understanding how this cell-cell and metabolic coupling lead to functionally optimized structures is still limited.

RESULTS

Here, we present a data-driven spatial framework to computationally investigate the development of yeast colonies as such a multicellular structure in dependence on metabolic capacity. For this purpose, we first developed and parameterized a dynamic cell state and growth model for yeast based on on experimental data from homogeneous liquid media conditions. The inferred model is subsequently used in a spatially coarse-grained model for colony development to investigate the effect of metabolic coupling by calibrating spatial parameters from experimental time-course data of colony growth using state-of-the-art statistical techniques for model uncertainty and parameter estimations. The model is finally validated by independent experimental data of an alternative yeast strain with distinct metabolic characteristics and illustrates the impact of metabolic coupling for structure formation.

CONCLUSIONS

We introduce a novel model for yeast colony formation, present a statistical methodology for model calibration in a data-driven manner, and demonstrate how the established model can be used to generate predictions across scales by validation against independent measurements of genetically distinct yeast strains.

摘要

背景

像哺乳动物组织或微生物生物膜这样的多细胞实体通常表现出适应其特定功能或环境的复杂空间排列。这些结构是由细胞间信号以及与环境的相互作用产生的,这些作用使相同基因型的细胞分化为组织良好的多样化细胞群落。尽管这一点很重要,但我们对这种细胞间和代谢偶联如何导致功能优化结构的理解仍然有限。

结果

在这里,我们提出了一个数据驱动的空间框架,用于计算研究酵母菌落作为这样的多细胞结构的发育,这取决于代谢能力。为此,我们首先基于同质液体培养基条件下的实验数据,为酵母开发并参数化了一个动态细胞状态和生长模型。推断出的模型随后用于菌落发育的空间粗粒化模型中,通过使用最先进的统计技术对模型不确定性和参数估计进行校准,从菌落生长的实验时程数据中推断出代谢偶联的影响。该模型最后通过具有不同代谢特性的替代酵母菌株的独立实验数据进行验证,并说明了代谢偶联对结构形成的影响。

结论

我们引入了一种用于酵母菌落形成的新模型,提出了一种数据驱动的模型校准统计方法,并通过对遗传上不同的酵母菌株的独立测量进行验证,展示了如何通过跨尺度预测来应用建立的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41c/6923950/a6c3488b31e9/12860_2019_234_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验