Suppr超能文献

概率机器学习和人工智能。

Probabilistic machine learning and artificial intelligence.

机构信息

Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.

出版信息

Nature. 2015 May 28;521(7553):452-9. doi: 10.1038/nature14541.

Abstract

How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

摘要

机器如何从经验中学习?概率建模为理解学习的本质提供了一个框架,因此已成为设计通过经验获得的数据进行学习的机器的主要理论和实践方法之一。概率框架描述了如何表示和操作关于模型和预测的不确定性,它在科学数据分析、机器学习、机器人技术、认知科学和人工智能中具有核心作用。本文综述介绍了这个框架,并讨论了该领域的一些最新进展,即概率编程、贝叶斯优化、数据压缩和自动模型发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验