Reich Henry T
Neptune Studios, Missoula, Montana.
Biometrics. 2020 Sep;76(3):1017-1027. doi: 10.1111/biom.13203. Epub 2020 Jan 9.
We present general theoretical limits on the possible accuracy (mean squared error or MSE) of occupancy estimates for a large range of occupancy study designs with imperfect detection and confirm our theoretical results via a simulation study. In particular, we show that for a given total survey effort, the best possible MSE is driven by two design-related factors: the fraction of visits made at occupied sites (regardless of whether that occupancy status is known or not) and the number of visits made to each site with unknown occupancy status (ie, sites with no detections). The limits reveal that there is very little room for improvement over optimal implementations of the three existing occupancy design paradigms: standard design (visit S sites K times each), removal design (visit S sites up to K times each, halting visits to each site following a positive detection), and conditional design (visit S sites once, then resurvey sites with a positive detection an additional times). For the small portion of the occupancy-detection parameter space where improvement can be achieved, we introduce a new hybrid survey design with accuracy closer to the theoretical limit, which we illustrate by reanalyzing an existing coyote (Canis latrans) camera trap dataset. Our results provide new clarity and intuition regarding key factors of occupancy study design.
我们给出了一系列具有不完全检测的占用研究设计中占用估计可能精度(均方误差或MSE)的一般理论极限,并通过模拟研究证实了我们的理论结果。具体而言,我们表明,对于给定的总调查工作量,最佳可能的MSE由两个与设计相关的因素驱动:在被占用地点进行的访问比例(无论该占用状态是否已知)以及对每个占用状态未知的地点(即未检测到的地点)进行的访问次数。这些极限表明,在三种现有占用设计范式的最优实现上几乎没有改进空间:标准设计(对S个地点各访问K次)、移除设计(对S个地点各访问至多K次,在检测到阳性后停止对每个地点访问)和条件设计(对S个地点各访问一次,然后对检测到阳性的地点再额外访问 次)。对于占用检测参数空间中可以实现改进的小部分,我们引入了一种新的混合调查设计,其精度更接近理论极限,我们通过重新分析现有的郊狼(犬属)相机陷阱数据集对此进行了说明。我们的结果为占用研究设计的关键因素提供了新的清晰度和直观认识。