Geng Rui, Yin Juanjuan, Zhou Jingxin, Jiao Tifeng, Feng Yao, Zhang Lexin, Chen Yan, Bai Zhenhua, Peng Qiuming
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
Nanomaterials (Basel). 2019 Dec 18;10(1):1. doi: 10.3390/nano10010001.
The construction of heterojunctions provides a promising strategy to improve photocatalytic hydrogen evolution. However, how to fabricate a nanoscale TiO/g-CN heterostructure and hinder the aggregation of bulk g-CN using simple methods remains a challenge. In this work, we use a simple in situ construction method to design a heterojunction model based on molecular self-assembly, which uses a small molecule matrix for self-integration, including coordination donors (AgNO), inorganic titanium source (Ti(SO)) and g-CN precursor (melamine). The self-assembled porous g-CN nanotube can hamper carrier aggregation and it provides numerous catalytic active sites, mainly via the coordination of Ag ions. Meanwhile, the TiO NPs are easily mineralized on the nanotube template in dispersive distribution to form a heterostructure via an N-Ti bond of protonation, which contributes to shortening the interfacial carrier transport, resulting in enhanced electron-hole pairs separation. Originating from all of the above synergistic effects, the obtained Ag/TiO/g-CN heterogenous photocatalysts exhibit an enhanced H evolution rate with excellent sustainability 20.6-fold-over pure g-CN. Our report provides a feasible and simple strategy to fabricate a nanoscale heterojunction incorporating g-CN, and has great potential in environmental protection and water splitting.
异质结的构建为提高光催化析氢性能提供了一种很有前景的策略。然而,如何使用简单方法制备纳米级TiO/g-CN异质结构并抑制块状g-CN的聚集仍然是一个挑战。在这项工作中,我们采用一种简单的原位构建方法,基于分子自组装设计了一种异质结模型,该模型利用小分子基质进行自整合,包括配位供体(AgNO)、无机钛源(Ti(SO))和g-CN前驱体(三聚氰胺)。自组装的多孔g-CN纳米管可以阻碍载流子聚集,并主要通过Ag离子的配位提供大量催化活性位点。同时,TiO纳米颗粒易于在纳米管模板上以分散分布的方式矿化,通过质子化的N-Ti键形成异质结构,这有助于缩短界面载流子传输,从而增强电子-空穴对的分离。源于上述所有协同效应,所制备的Ag/TiO/g-CN异质光催化剂表现出提高的析氢速率,具有出色的可持续性,是纯g-CN的20.6倍。我们的报告提供了一种可行且简单的策略来制备包含g-CN的纳米级异质结,在环境保护和水分解方面具有巨大潜力。