Department of Electrical and Electronics Engineering, Universidad del Norte, Barranquilla 081001, Colombia.
Sensors (Basel). 2019 Dec 19;20(1):39. doi: 10.3390/s20010039.
In this work, authors address workload computation combining human activity recognition and heart rate measurements to establish a scalable framework for health at work and fitness-related applications. The proposed architecture consists of two wearable sensors: one for motion, and another for heart rate. The system employs machine learning algorithms to determine the activity performed by a user, and takes a concept from ergonomics, the Frimat's score, to compute the corresponding physical workload from measured heart rate values providing in addition a qualitative description of the workload. A random forest activity classifier is trained and validated with data from nine subjects, achieving an accuracy of 97.5%. Then, tests with 20 subjects show the reliability of the activity classifier, which keeps an accuracy up to 92% during real-time testing. Additionally, a single-subject twenty-day physical workload tracking case study evinces the system capabilities to detect body adaptation to a custom exercise routine. The proposed system enables remote and multi-user workload monitoring, which facilitates the job for experts in ergonomics and workplace health.
在这项工作中,作者结合人体活动识别和心率测量来解决工作量计算问题,为工作场所健康和与健身相关的应用建立了一个可扩展的框架。所提出的架构由两个可穿戴传感器组成:一个用于运动,另一个用于心率。该系统采用机器学习算法来确定用户执行的活动,并采用人体工程学中的 Frimat 分数概念,根据测量的心率值计算相应的体力工作量,并提供工作量的定性描述。使用来自九个受试者的数据训练和验证随机森林活动分类器,准确率达到 97.5%。然后,对 20 名受试者的测试显示了活动分类器的可靠性,在实时测试中准确率高达 92%。此外,一项为期 20 天的单个体物理工作量跟踪案例研究证明了该系统能够检测到身体对定制运动的适应能力。该系统支持远程和多用户工作量监控,这为人体工程学和工作场所健康专家的工作提供了便利。