Institute for Artificial Intelligence and Department of Computer Science and Technology, Tsinghua University, Beijing, China.
DonLinks School of Economics and Management, University of Science and Technology Beijing, Beijing, China.
BMC Bioinformatics. 2019 Dec 20;20(Suppl 24):678. doi: 10.1186/s12859-019-3244-0.
Ribosome profiling brings insight to the process of translation. A basic step in profile construction at transcript level is to map Ribo-seq data to transcripts, and then assign a huge number of multiple-mapped reads to similar isoforms. Existing methods either discard the multiple mapped-reads, or allocate them randomly, or assign them proportionally according to transcript abundance estimated from RNA-seq data.
Here we present DeepShape, an RNA-seq free computational method to estimate ribosome abundance of isoforms, and simultaneously compute their ribosome profiles using a deep learning model. Our simulation results demonstrate that DeepShape can provide more accurate estimations on both ribosome abundance and profiles when compared to state-of-the-art methods. We applied DeepShape to a set of Ribo-seq data from PC3 human prostate cancer cells with and without PP242 treatment. In the four cell invasion/metastasis genes that are translationally regulated by PP242 treatment, different isoforms show very different characteristics of translational efficiency and regulation patterns. Transcript level ribosome distributions were analyzed by "Codon Residence Index (CRI)" proposed in this study to investigate the relative speed that a ribosome moves on a codon compared to its synonymous codons. We observe consistent CRI patterns in PC3 cells. We found that the translation of several codons could be regulated by PP242 treatment.
In summary, we demonstrate that DeepShape can serve as a powerful tool for Ribo-seq data analysis.
核糖体谱分析为翻译过程提供了深入的了解。在转录水平上构建谱图的基本步骤是将核糖体测序数据映射到转录本上,然后将大量多映射的reads 分配给相似的异构体。现有的方法要么丢弃多映射的 reads,要么随机分配它们,要么根据 RNA-seq 数据估计的转录本丰度按比例分配它们。
在这里,我们提出了 DeepShape,这是一种无 RNA-seq 的计算方法,可以估计异构体的核糖体丰度,并使用深度学习模型同时计算它们的核糖体谱。我们的模拟结果表明,与最先进的方法相比,DeepShape 可以提供更准确的核糖体丰度和谱图估计。我们将 DeepShape 应用于一组来自人前列腺癌细胞 PC3 的核糖体测序数据,这些细胞分别经过和未经过 PP242 处理。在四个受 PP242 处理调控的细胞侵袭/转移基因中,不同的异构体表现出非常不同的翻译效率和调控模式特征。我们通过本研究中提出的“密码子居留指数(CRI)”分析转录本水平的核糖体分布,以研究核糖体相对于其同义密码子在密码子上移动的相对速度。我们在 PC3 细胞中观察到一致的 CRI 模式。我们发现,几个密码子的翻译可以受到 PP242 处理的调控。
综上所述,我们证明了 DeepShape 可以作为核糖体测序数据分析的有力工具。