Suppr超能文献

视频运动分析可区分健康老年人、轻度认知障碍和阿尔茨海默病:一项横断面研究。

Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study.

机构信息

Institute of Psychiatry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Physical Education and Sports Institute, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.

出版信息

Exp Gerontol. 2020 Mar;131:110816. doi: 10.1016/j.exger.2019.110816. Epub 2019 Dec 17.

Abstract

Gait parameters have been investigated as an additional tool for differential diagnosis in neurocognitive disorders, especially among healthy elderly (HE), those with mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients. A videogrammetry system could be used as a low-cost and clinically practical equipment to capture and analyze gait in older adults. The aim of this study was to select the better gait parameter to differentiate these groups among different motor test conditions with videogrammetry analyses. Different motor conditions were used in three specific assessments: 10-meter walk test (10mWT), timed up and go test (TUGT), and treadmill walk test (TWT). These tasks were compared among HE (n=17), MCI (n=23), and AD (n=23) groups. One-way ANOVA, Kruskal-Wallis, and Bonferroni post-hoc tests were used to compare variables among groups. Then, an effect size (ES) and a linear regression analysis were calculated. The gait parameters showed significant differences among groups in all conditions, but not in TWT. Controlled by confounding variables, the gait velocity in 10mWT at usual speed, and TUGT in dual-task condition, predicts 39% and 53% of the difference among diagnoses, respectively. Finally, these results suggest that a low-cost and practical video analysis could be able to differentiate HE, those with MCI, and AD patients in clinical assessments.

摘要

步态参数已被研究作为神经认知障碍(尤其是在健康老年人 [HE]、轻度认知障碍 [MCI] 和阿尔茨海默病 [AD] 患者中)鉴别诊断的辅助工具。视频分析系统可以作为一种低成本且临床实用的设备,用于捕获和分析老年人的步态。本研究旨在选择更好的步态参数,以便在视频分析的不同运动测试条件下区分这些组别。在三个特定评估中使用了不同的运动条件:10 米步行测试(10mWT)、计时起立行走测试(TUGT)和跑步机步行测试(TWT)。这些任务在 HE(n=17)、MCI(n=23)和 AD(n=23)组之间进行了比较。使用单向方差分析、克鲁斯卡尔-沃利斯和 Bonferroni 事后检验来比较组间的变量。然后,计算了效应量(ES)和线性回归分析。在所有条件下,步态参数在各组之间均显示出显著差异,但在 TWT 中则没有。通过混杂变量控制后,10mWT 中常速行走的步态速度和 TUGT 的双重任务条件,分别可以预测 39%和 53%的诊断差异。最后,这些结果表明,低成本且实用的视频分析可以在临床评估中区分 HE、MCI 和 AD 患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验