Suppr超能文献

端到端优化的感兴趣区域图像压缩

End-to-end Optimized ROI Image Compression.

作者信息

Cai Chunlei, Chen Li, Zhang Xiaoyun, Gao Zhiyong

出版信息

IEEE Trans Image Process. 2019 Dec 25. doi: 10.1109/TIP.2019.2960869.

Abstract

Compressing an image with more bits automatically allocated to the region of interest (ROI) than to the background can both protect key information and reduce substantial redundancy. This paper models ROI image compression as an optimization problem of minimizing a weighted sum of the rate of the image and distortion of the ROI. The traditional framework solves this problem by cascading ROI prediction and ROI coding, through which achieving the optimized solution is impossible. To improve coding performance, we propose a novel deep-learning-based unified framework that can achieve rate distortion optimization for ROI compression. Specifically, the proposed framework includes a pair of ROI encoder and decoder convolutional neural networks and a learned entropy codec. The encoder network simultaneously generates multiscale representations that support efficient rate allocation and an implicit ROI mask that guides rate allocation. The proposed framework can automatically complete ROI image compression, and it can be optimized from data in an end-to-end manner. To effectively train the framework by back propagation, we develop a soft-to-hard ROI prediction scheme to make the entire framework differential. To improve visual quality, we propose a hierarchical distortion loss function to protect both pixel-level fidelity for ROI and structural similarity for the entire image. The proposed framework is implemented in two scenarios: salient-target and face-target ROI compression. Comparative experiments demonstrate the advantages of the proposed framework over the traditional framework, including considerably better subjective visual quality, significantly higher objective ROI compression performance and execution efficiency.

摘要

对分配给感兴趣区域(ROI)的比特数多于背景的图像进行压缩,既能保护关键信息,又能减少大量冗余。本文将ROI图像压缩建模为一个优化问题,即最小化图像比特率和ROI失真的加权和。传统框架通过级联ROI预测和ROI编码来解决这个问题,但这样无法实现最优解。为了提高编码性能,我们提出了一种基于深度学习的新型统一框架,该框架可以实现ROI压缩的率失真优化。具体来说,所提出的框架包括一对ROI编码器和解码器卷积神经网络以及一个学习到的熵编码解码器。编码器网络同时生成支持高效比特率分配的多尺度表示和指导比特率分配的隐式ROI掩码。所提出的框架可以自动完成ROI图像压缩,并且可以以端到端的方式从数据中进行优化。为了通过反向传播有效地训练该框架,我们开发了一种从软到硬的ROI预测方案,以使整个框架具有可微性。为了提高视觉质量,我们提出了一种分层失真损失函数,以保护ROI的像素级保真度和整个图像的结构相似性。所提出的框架在两种场景中实现:显著目标和面部目标ROI压缩。对比实验证明了所提出框架相对于传统框架的优势,包括明显更好的主观视觉质量、显著更高的客观ROI压缩性能和执行效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验