Fernández-Costa Carolina, Martínez-Bartolomé Salvador, McClatchy Daniel, Yates John R
Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States.
Anal Chem. 2020 Jan 21;92(2):1697-1701. doi: 10.1021/acs.analchem.9b04955. Epub 2020 Jan 9.
Mass spectrometry-based proteomics is an invaluable tool for addressing important biological questions. Data-dependent acquisition methods effectuate stochastic acquisition of data in complex mixtures, which results in missing identifications across replicates. We developed a search approach that improves the reproducibility of data acquired from any mass spectrometer. In our approach, a spectral library is built from the identification results from a database search, and then, the library is used to research the same data files to obtain the final result. We showed that higher identification and quantification reproducibility is achieved with the dual-search approach than with a typical database search. Four datasets with different complexity were compared: (1) data from a cell lysate study performed in our lab, (2) data from an interactome study performed in our lab, (3) a publicly available extracellular vesicles dataset, and (4) a publicly available phosphoproteomics dataset. Our results show that the dual-search approach can be widely and easily used to improve data quality in proteomics data.
基于质谱的蛋白质组学是解决重要生物学问题的宝贵工具。数据依赖型采集方法可实现对复杂混合物中数据的随机采集,这会导致重复检测中出现鉴定缺失的情况。我们开发了一种搜索方法,可提高从任何质谱仪获取的数据的重现性。在我们的方法中,根据数据库搜索的鉴定结果构建一个谱库,然后使用该谱库对相同的数据文件进行检索以获得最终结果。我们表明,与典型的数据库搜索相比,双检索方法具有更高的鉴定和定量重现性。我们比较了四个不同复杂度的数据集:(1)我们实验室进行的细胞裂解物研究的数据,(2)我们实验室进行的相互作用组研究的数据,(3)一个公开可用的细胞外囊泡数据集,以及(4)一个公开可用的磷酸化蛋白质组数据集。我们的结果表明,双检索方法可广泛且轻松地用于提高蛋白质组学数据的质量。