Kim Sooran, Kim Kyoo, Koo Jahyun, Lee Hoonkyung, Il Min Byung, Kim Duck Young
Department of Physics, Pohang University of Science and Technology, Pohang, 37673, South Korea.
Department of Physics Education, Kyungpook National University, Daegu, 41566, Korea.
Sci Rep. 2019 Dec 27;9(1):20253. doi: 10.1038/s41598-019-56497-6.
Crystal structure prediction and in silico physical property observations guide experimental synthesis in high-pressure research. Here, we used magnesium carbides as a representative example of computational high-pressure studies. We predicted various compositions of Mg-C compounds up to 150 GPa and successfully reproduced previous experimental results. Interestingly, our proposed MgC at high pressure >7 GPa consists of extended carbon bonds, one-dimensional graphene layers, and Mg atomic layers, which provides a good platform to study superconductivity of metal intercalated graphene nano-ribbons. We found that this new phase of MgC could be recovered to ambient pressure and exhibited a strong electron-phonon coupling (EPC) strength of 0.6 whose corresponding superconductivity transition temperature reached 15 K. The EPC originated from the cooperation of the out-of-plane and the in-plane phonon modes. The geometry confinement and the hybridization between the Mg s and C p orbitals significantly affect the coupling of phonon modes and electrons. These results show the importance of the high-pressure route to the synthesis of novel functional materials, which can promote the search for new phases of carbon-based superconductors.
晶体结构预测和计算机模拟物理性质观测为高压研究中的实验合成提供了指导。在此,我们以碳化镁作为计算高压研究的一个代表性实例。我们预测了高达150 GPa的各种Mg-C化合物组成,并成功重现了先前的实验结果。有趣的是,我们提出的在高于7 GPa高压下的MgC由延伸的碳键、一维石墨烯层和Mg原子层组成,这为研究金属插层石墨烯纳米带的超导性提供了一个良好的平台。我们发现这种新的MgC相可以恢复到常压,并表现出0.6的强电子-声子耦合(EPC)强度,其对应的超导转变温度达到15 K。EPC源于面外和面内声子模式的协同作用。几何限制以及Mg s和C p轨道之间的杂化显著影响声子模式与电子的耦合。这些结果表明了高压途径在新型功能材料合成中的重要性,这有助于寻找碳基超导体的新相。