Zhang Linglong, Tang Yilin, Khan Ahmed Raza, Hasan Md Mehedi, Wang Ping, Yan Han, Yildirim Tanju, Torres Juan Felipe, Neupane Guru Prakash, Zhang Yupeng, Li Quan, Lu Yuerui
Institute of Microscale Optoelectronics College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China.
Research School of Electrical, Energy and Materials Engineering College of Engineering and Computer Science The Australian National University Canberra ACT 2601 Australia.
Adv Sci (Weinh). 2020 Nov 10;7(24):2002697. doi: 10.1002/advs.202002697. eCollection 2020 Dec.
2D materials possess wide-tuning properties ranging from semiconducting and metallization to superconducting, etc., which are determined by their structure, empowering them to be appealing in optoelectronic and photovoltaic applications. Pressure is an effective and clean tool that allows modifications of the electronic structure, crystal structure, morphologies, and compositions of 2D materials through van der Waals (vdW) interaction engineering. This enables an insightful understanding of the variable vdW interaction induced structural changes, structure-property relations as well as contributes to the versatile implications of 2D materials. Here, the recent progress of high-pressure research toward 2D materials and heterostructures, involving graphene, boron nitride, transition metal dichalcogenides, 2D perovskites, black phosphorene, MXene, and covalent-organic frameworks, using diamond anvil cell is summarized. A detailed analysis of pressurized structure, phonon dynamics, superconducting, metallization, doping together with optical property is performed. Further, the pressure-induced optimized properties and potential applications as well as the vision of engineering the vdW interactions in heterostructures are highlighted. Finally, conclusions and outlook are presented on the way forward.
二维材料具有从半导体、金属化到超导等广泛的可调谐特性,这些特性由其结构决定,使其在光电和光伏应用中具有吸引力。压力是一种有效且清洁的工具,可通过范德华(vdW)相互作用工程对二维材料的电子结构、晶体结构、形态和组成进行改性。这有助于深入理解可变的范德华相互作用引起的结构变化、结构-性能关系,并有助于二维材料的多种应用。在此,总结了利用金刚石对顶砧对二维材料和异质结构(包括石墨烯、氮化硼、过渡金属二硫属化物、二维钙钛矿、黑磷、MXene和共价有机框架)进行高压研究的最新进展。对加压结构、声子动力学、超导、金属化、掺杂以及光学性质进行了详细分析。此外,还强调了压力诱导的优化特性和潜在应用,以及在异质结构中设计范德华相互作用的前景。最后,对未来的发展方向给出了结论和展望。