Suppr超能文献

基于分析字典学习和流形结构正则化的 CS-MRI 重建。

CS-MRI reconstruction based on analysis dictionary learning and manifold structure regularization.

机构信息

School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China.

School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China.

出版信息

Neural Netw. 2020 Mar;123:217-233. doi: 10.1016/j.neunet.2019.12.010. Epub 2019 Dec 17.

Abstract

Compressed sensing (CS) significantly accelerates magnetic resonance imaging (MRI) by allowing the exact reconstruction of image from highly undersampling k-space data. In this process, the high sparsity obtained by the learned dictionary and exploitation of correlation among patches are essential to the reconstructed image quality. In this paper, by a use of these two aspects, we propose a novel CS-MRI model based on analysis dictionary learning and manifold structure regularization (ADMS). Furthermore, a proper tight frame constraint is used to obtain an effective overcomplete analysis dictionary with a high sparsifying capacity. The constructed manifold structure regularization nonuniformly enforces the correlation of each group formed by similar patches, which is more consistent with the diverse nonlocal similarity in realistic images. The proposed model is efficiently solved by the alternating direction method of multipliers (ADMM), in which the fast algorithm for each sub-problem is separately developed. The experimental results demonstrate that main components in the proposed method contribute to the final reconstruction performance and the effectiveness of the proposed model.

摘要

压缩感知(CS)通过允许从高度欠采样的 k 空间数据中精确重建图像,显著加速磁共振成像(MRI)。在这个过程中,通过学习字典获得的高稀疏性和利用斑块之间的相关性对于重建图像质量至关重要。在本文中,我们通过利用这两个方面,提出了一种基于分析字典学习和流形结构正则化(ADMS)的新型 CS-MRI 模型。此外,还使用了适当的紧框架约束来获得具有高稀疏能力的有效过完备分析字典。所构建的流形结构正则化非均匀地强制每个由相似斑块形成的组之间的相关性,这与现实图像中多样化的非局部相似性更加一致。所提出的模型通过增广拉格朗日乘子法(ADMM)有效地求解,其中分别开发了每个子问题的快速算法。实验结果表明,所提出方法中的主要成分有助于最终的重建性能和所提出模型的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验