Juzeliu Nas Eimutis, Fray Derek J
Centre for Physical Sciences and Technology , Saulėtekio Str. 3 , LT-10257 Vilnius , Lithuania.
Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , CB3 0FS Cambridge , United Kingdom.
Chem Rev. 2020 Feb 12;120(3):1690-1709. doi: 10.1021/acs.chemrev.9b00428. Epub 2019 Dec 30.
Silicon electrochemistry has the potential to advance sustainable energy solutions by offering environmentally friendly and secure technologies that can contribute to the low-carbon economy. Electrochemical methods use electrons directly as reducing agents, eliminating the need for harmful chemicals and offering simpler, one-step, process control. Silicon itself is the second most abundant element in the earth's crust, is nontoxic, and is a robust material offering high efficiencies in solar photovoltaics. As such, silicon currently dominates the solar energy market and could continue to do so for the next few decades. This review summarizes recent achievements in the molten salt electrochemistry of silicon, highlighting subjects of technological significance such as the production of silicon by silica electro-deoxidation, the formation of photoactive layers, silicon electrorefining, and the synthesis of semiconductors as well as nanostructures for energy storage applications. The review highlights future opportunities and challenges such as the production of highly pure silicon, the creation of carbon-free anodes for oxygen production, and silicon electrodeposition from gaseous precursors.
硅电化学有潜力通过提供环境友好且安全的技术来推动可持续能源解决方案,这些技术有助于低碳经济的发展。电化学方法直接使用电子作为还原剂,无需使用有害化学物质,且提供更简单的一步法过程控制。硅本身是地壳中第二丰富的元素,无毒,并且是一种在太阳能光伏领域具有高效率的坚固材料。因此,硅目前主导着太阳能市场,并且在未来几十年可能会继续如此。本综述总结了硅熔盐电化学的最新进展,突出了具有技术重要性的主题,如通过二氧化硅电脱氧生产硅、光活性层的形成、硅的电解精炼、用于储能应用的半导体以及纳米结构的合成。该综述强调了未来的机遇和挑战,如生产高纯度硅、制造用于氧气生产的无碳阳极以及从气态前驱体中电沉积硅。