Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121, Alessandria, Italy.
School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
Chemosphere. 2020 May;246:125707. doi: 10.1016/j.chemosphere.2019.125707. Epub 2019 Dec 23.
The effects of C on mTOR (mechanistic Target of Rapamycin) activity in mussel digestive gland were investigated. mTOR is a kinase that senses physiological and environmental signals to control eukaryotic cell growth. mTOR is present in two complexes: the phosphorylated mTORC1 regulates cell growth by activating anabolic processes, and by inhibiting catabolic processes (i.e. autophagy); mTORC2 also modulates actin cytoskeleton organization. Mussels were exposed to C (0.01, 0.1 and 1 mg/L) for 72 h. Immunocytochemical analysis using a specific antibody revealed the cellular distribution of C in mussel digestive gland, already at the lowest concentration. In exposed mussels, the dephosphorylation of mTORC1 and mTORC2 may explain the C effects, i.e. the reduction of lysosomal membrane stability, the enhancement of LC3B protein, and the increase of lysosomal/cytoplasmic volume ratio; as well the cytoskeletal alterations. No oxidative stress was observed. Multivariate analysis was used to facilitate the interpretation of the biomarker data. Finally, a low density oligo-microarray was used to understand the cellular responses to fullerene. Transcriptomics identified a number of differentially expressed genes (DEGs) showing a maximum in animals exposed to 0.1 mg/L C. The most affected processes are associated with energy metabolism, lysosomal activity and cytoskeleton organization. In this study, we report the first data on the subcellular distribution of C in mussel's cells; and on the involvement of mTOR inhibition in the alterations due to nanoparticle accumulation. Overall, mTOR deregulation, by affecting protein synthesis, energy metabolism and autophagy, may reduce the capacity of the organisms to effectively grow and reproduce.
研究了 C 对贻贝消化腺中 mTOR(雷帕霉素靶蛋白)活性的影响。mTOR 是一种激酶,它可以感知生理和环境信号,从而控制真核细胞的生长。mTOR 存在于两个复合物中:磷酸化的 mTORC1 通过激活合成代谢过程和抑制分解代谢过程(即自噬)来调节细胞生长;mTORC2 还调节肌动蛋白细胞骨架的组织。贻贝暴露于 C(0.01、0.1 和 1mg/L)72 小时。使用特异性抗体的免疫细胞化学分析显示 C 在贻贝消化腺中的细胞分布,在最低浓度下已经存在。在暴露的贻贝中,mTORC1 和 mTORC2 的去磷酸化可能解释了 C 的作用,即溶酶体膜稳定性降低、LC3B 蛋白增强以及溶酶体/细胞质体积比增加;以及细胞骨架改变。未观察到氧化应激。多元分析用于促进生物标志物数据的解释。最后,使用低密寡微阵列来了解富勒烯对细胞的反应。转录组学确定了许多差异表达基因 (DEGs),在暴露于 0.1mg/L C 的动物中达到最大值。受影响最大的过程与能量代谢、溶酶体活性和细胞骨架组织有关。在这项研究中,我们报告了 C 在贻贝细胞中的亚细胞分布的第一个数据;以及 mTOR 抑制在纳米颗粒积累引起的改变中的作用。总体而言,mTOR 的失调通过影响蛋白质合成、能量代谢和自噬,可能会降低生物体有效生长和繁殖的能力。