Suppr超能文献

番茄中脂质运载蛋白的功能分析

Functional analyses of lipocalin proteins in tomato.

作者信息

Wahyudi Anung, Ariyani Dinni, Ma Gang, Inaba Ryosuke, Fukasawa Chikako, Nakano Ryohei, Motohashi Reiko

机构信息

Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan.

Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan.

出版信息

Plant Biotechnol (Tokyo). 2018 Dec 25;35(4):303-312. doi: 10.5511/plantbiotechnology.18.0620a.

Abstract

In this study, two temperature-induced lipocalin genes and , and a chloroplastic lipocalin gene were isolated from 'Micro-Tom' tomato. The coding sequences of , and were 558, 558, and 1002 bp, respectively. By TargetP analysis, no characteristic transit peptides were predicted in the proteins of SlTIL1 and SlTIL2, while a chloroplastic transit peptide was predicted in the protein of SlCHL. The subcellular localization results indicated that SlTIL1 and SlTIL2 proteins were major localized in the plasma membrane, while SlCHL was localized in chloroplast. To understand the function of lipocalins, transgenic tomato over-expressed , and and their virus-induced gene silencing (VIGS) plants were generated. The phenotypes were significantly affected when the , and were over-expressed or silenced by VIGS, which suggested that the three lipocalins played important roles in regulating the growth and development of tomato. In addition, the level of ROS (O and HO) was low in , and over-expressed plants, while it was high in their silenced plants. The changes in the expression of s were consistent with the accumulations of ROS, which indicated that lipocalins might have an important role in abiotic oxidative stress tolerance in tomato plants. Especially SlTIL1 and SlTIL2 are localized around their membranes and protect them from ROS. The results will contribute to elucidating the functions of lipocalin in plants, and provide new strategies to improve the tolerance to abiotic stress in tomato plants.

摘要

在本研究中,从“Micro-Tom”番茄中分离出两个温度诱导的脂质运载蛋白基因SlTIL1和SlTIL2,以及一个叶绿体脂质运载蛋白基因SlCHL。SlTIL1、SlTIL2和SlCHL的编码序列分别为558、558和1002 bp。通过TargetP分析,在SlTIL1和SlTIL2的蛋白质中未预测到特征性转运肽,而在SlCHL的蛋白质中预测到一个叶绿体转运肽。亚细胞定位结果表明,SlTIL1和SlTIL2蛋白主要定位于质膜,而SlCHL定位于叶绿体。为了解脂质运载蛋白的功能,构建了过表达SlTIL1、SlTIL2和SlCHL的转基因番茄及其病毒诱导基因沉默(VIGS)植株。当SlTIL1、SlTIL2和SlCHL过表达或通过VIGS沉默时,番茄表型受到显著影响,这表明这三种脂质运载蛋白在调控番茄生长发育中发挥重要作用。此外,在SlTIL1、SlTIL2和SlCHL过表达植株中活性氧(O₂和H₂O₂)水平较低,而在其沉默植株中活性氧水平较高。SlTIL1、SlTIL2和SlCHL表达的变化与活性氧的积累一致,这表明脂质运载蛋白可能在番茄植株非生物氧化胁迫耐受性中起重要作用。特别是SlTIL1和SlTIL2定位于其膜周围并保护它们免受活性氧的侵害。这些结果将有助于阐明植物中脂质运载蛋白的功能,并为提高番茄植株对非生物胁迫的耐受性提供新策略。

相似文献

1
Functional analyses of lipocalin proteins in tomato.
Plant Biotechnol (Tokyo). 2018 Dec 25;35(4):303-312. doi: 10.5511/plantbiotechnology.18.0620a.
2
Function of and under heat and oxidative stresses in tomato.
Plant Biotechnol (Tokyo). 2020 Sep 25;37(3):335-341. doi: 10.5511/plantbiotechnology.20.0422a.
3
Identification, expression, and evolutionary analyses of plant lipocalins.
Plant Physiol. 2005 Dec;139(4):2017-28. doi: 10.1104/pp.105.070466. Epub 2005 Nov 23.
4
The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress.
Plant J. 2009 Nov;60(4):691-702. doi: 10.1111/j.1365-313X.2009.03991.x. Epub 2009 Aug 6.
5
The RING Finger E3 Ligase SpRing is a Positive Regulator of Salt Stress Signaling in Salt-Tolerant Wild Tomato Species.
Plant Cell Physiol. 2016 Mar;57(3):528-39. doi: 10.1093/pcp/pcw006. Epub 2016 Jan 18.
8
A temperature induced lipocalin gene from Medicago falcata (MfTIL1) confers tolerance to cold and oxidative stress.
Plant Mol Biol. 2015 Apr;87(6):645-54. doi: 10.1007/s11103-015-0304-3. Epub 2015 Mar 6.
9
RNA interference as a gene silencing tool to control in tomato (Solanum lycopersicum).
PeerJ. 2016 Dec 15;4:e2673. doi: 10.7717/peerj.2673. eCollection 2016.
10
Overexpression of E3 Ubiquitin Ligase Gene Contributes to Resistance against Chilling Stress and Leaf Mold Disease in Tomato.
Front Plant Sci. 2017 Jun 30;8:1109. doi: 10.3389/fpls.2017.01109. eCollection 2017.

引用本文的文献

1
Cd and Zn regulating uptake and accumulation of TDCPP and TMPP in rice ( L.) in transcript and protein level.
Physiol Mol Biol Plants. 2025 Apr;31(4):555-570. doi: 10.1007/s12298-025-01589-z. Epub 2025 May 8.
2
The Fruit Proteome Response to the Ripening Stages in Three Tomato Genotypes.
Plants (Basel). 2022 Feb 19;11(4):553. doi: 10.3390/plants11040553.
3
Function of and under heat and oxidative stresses in tomato.
Plant Biotechnol (Tokyo). 2020 Sep 25;37(3):335-341. doi: 10.5511/plantbiotechnology.20.0422a.

本文引用的文献

1
The Plastid Lipocalin LCNP Is Required for Sustained Photoprotective Energy Dissipation in Arabidopsis.
Plant Cell. 2018 Jan;30(1):196-208. doi: 10.1105/tpc.17.00536. Epub 2017 Dec 12.
2
Plastid Proteomic Analysis in Tomato Fruit Development.
PLoS One. 2015 Sep 15;10(9):e0137266. doi: 10.1371/journal.pone.0137266. eCollection 2015.
3
A hydrophobic proline-rich motif is involved in the intracellular targeting of temperature-induced lipocalin.
Plant Mol Biol. 2015 Jun;88(3):301-11. doi: 10.1007/s11103-015-0326-x. Epub 2015 May 10.
4
Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity.
J Plant Physiol. 2014 Feb 15;171(3-4):250-9. doi: 10.1016/j.jplph.2013.08.003. Epub 2013 Sep 9.
7
Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics.
Plant Physiol. 2012 Oct;160(2):1037-51. doi: 10.1104/pp.112.204263. Epub 2012 Aug 24.
9
Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato.
Plant Biotechnol J. 2011 Sep;9(7):797-806. doi: 10.1111/j.1467-7652.2011.00589.x. Epub 2011 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验