Toit André du, Loos Ben, Hofmeyr Jan Hendrik S
Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
Methods Mol Biol. 2020;2088:345-357. doi: 10.1007/978-1-0716-0159-4_16.
Autophagy is an intracellular protein degradation pathway that plays a vital role in cellular homeostasis. It maintains cellular function through proteostasis and the removal of unused and harmful proteins and organelles. Moreover, it also serves as an adaptive response to metabolic perturbations. Deviation in autophagy activity has been linked to the progression of several pathologies, including neurodegenerative diseases. Preclinical trials have shown that modulating autophagy holds great promise in treating neurodegenerative diseases by clearing toxic protein aggregates. The success of autophagy modulating therapies requires extensive knowledge of the molecular machinery and, importantly, an in-depth understanding of the underlying systems properties of the autophagy system. A computational approach provides a powerful platform to interrogate and analyze the regulation, control, and behavior of reaction networks. However, the complexity of interactions involved in the autophagy pathway makes it challenging to isolate and characterize individual components. By reducing the autophagy process to a supply-demand system in which autophagosome synthesis (supply) and autophagosome degradation (demand) are linked by the autophagosomes, it is possible to determine the control of the supply and demand over the steady-state autophagosome flux and autophagosome concentration. In this chapter, we describe a methodology to perform supply and demand analysis of the autophagy system, the experimental procedure to measure the autophagy variables, and the use of the supply-demand framework to determine the distribution of flux and concentration control.
自噬是一种细胞内蛋白质降解途径,在细胞内稳态中起着至关重要的作用。它通过蛋白质稳态以及清除未使用的和有害的蛋白质及细胞器来维持细胞功能。此外,它还作为对代谢紊乱的一种适应性反应。自噬活性的偏差与包括神经退行性疾病在内的多种病理过程的进展有关。临床前试验表明,通过清除有毒蛋白质聚集体,调节自噬在治疗神经退行性疾病方面具有巨大潜力。自噬调节疗法的成功需要对分子机制有广泛的了解,重要的是,要深入理解自噬系统的潜在系统特性。计算方法提供了一个强大的平台来探究和分析反应网络的调控、控制和行为。然而,自噬途径中涉及的相互作用的复杂性使得分离和表征单个成分具有挑战性。通过将自噬过程简化为一个供需系统,其中自噬体的合成(供应)和自噬体的降解(需求)通过自噬体联系起来,就有可能确定供需对稳态自噬体通量和自噬体浓度的控制。在本章中,我们描述了一种对自噬系统进行供需分析的方法、测量自噬变量的实验程序,以及使用供需框架来确定通量分布和浓度控制。