Medical Imaging Center, Shanghai Advanced Research Institute, Shanghai, China.
Shanghai United Imaging Intelligence, Co., Ltd., Shanghai, China.
Brain Behav. 2020 Feb;10(2):e01499. doi: 10.1002/brb3.1499. Epub 2020 Jan 1.
Obsessive-compulsive disorder (OCD) is a mental disease in which people experience uncontrollable and repetitive thoughts or behaviors. Clinical diagnosis of OCD is achieved by using neuropsychological assessment metrics, which are often subjectively affected by psychologists and patients. In this study, we propose a classification model for OCD diagnosis using functional MR images.
Using functional connectivity (FC) matrices calculated from brain region of interest (ROI) pairs, a novel Riemann Kernel principal component analysis (PCA) model is employed for feature extraction, which preserves the topological information in the FC matrices. Hierarchical features are then fed into an ensemble classifier based on the XGBoost algorithm. Finally, decisive features extracted during classification are used to investigate the brain FC variations between patients with OCD and healthy controls.
The proposed algorithm yielded a classification accuracy of 91.8%. Additionally, the well-known cortico-striatal-thalamic-cortical (CSTC) circuit and cerebellum were found as highly related regions with OCD. To further analyze the cerebellar-related function in OCD, we demarcated cerebellum into three subregions according to their anatomical and functional property. Using these three functional cerebellum regions as seeds for brain connectivity computation, statistical results showed that patients with OCD have decreased posterior cerebellar connections.
This study provides a new and efficient method to characterize patients with OCD using resting-state functional MRI. We also provide a new perspective to analyze disease-related features. Despite of CSTC circuit, our model-driven feature analysis reported cerebellum as an OCD-related region. This paper may provide novel insight to the understanding of genetic etiology of OCD.
强迫症(OCD)是一种精神疾病,患者会经历无法控制和重复的想法或行为。OCD 的临床诊断是通过使用神经心理学评估指标来实现的,这些指标往往受到心理学家和患者的主观影响。在这项研究中,我们提出了一种使用功能磁共振成像(fMRI)对 OCD 进行分类诊断的模型。
使用基于感兴趣脑区(ROI)对的功能连接(FC)矩阵,采用一种新的黎曼核主成分分析(PCA)模型进行特征提取,该模型保留了 FC 矩阵中的拓扑信息。然后,将分层特征输入基于 XGBoost 算法的集成分类器。最后,利用分类过程中提取的判别特征来研究 OCD 患者与健康对照组之间的脑 FC 变化。
所提出的算法的分类准确率为 91.8%。此外,还发现了众所周知的皮质-纹状体-丘脑-皮质(CSTC)回路和小脑作为与 OCD 高度相关的区域。为了进一步分析 OCD 中的小脑相关功能,我们根据小脑的解剖和功能特性将小脑划分为三个亚区。使用这三个功能性小脑区域作为大脑连接计算的种子,统计结果表明,OCD 患者的后小脑连接减少。
本研究提供了一种使用静息态 fMRI 对 OCD 患者进行特征描述的新方法。我们还提供了一种分析疾病相关特征的新视角。尽管 CSTC 回路是一个 OCD 相关区域,但我们的模型驱动特征分析报告小脑也是一个 OCD 相关区域。本文可能为理解 OCD 的遗传病因提供新的见解。