Suppr超能文献

几何均值暴露和算术均值暴露在职业流行病学中的应用。

The use of geometric and arithmetic mean exposures in occupational epidemiology.

作者信息

Seixas N S, Robins T G, Moulton L H

机构信息

Department of Environmental and Industrial Health, University of Michigan, School of Public Health, Ann Arbor 48109-2029.

出版信息

Am J Ind Med. 1988;14(4):465-77. doi: 10.1002/ajim.4700140410.

Abstract

In constructing quantitative measures of exposure for the study of chronic occupational disease, researchers have generally used a cumulative exposure calculated as the sum of the products of period-specific exposure concentrations and the time each individual spent in each exposure category. There has been some disagreement and lack of clarity about the use of the geometric or arithmetic mean of exposure for this calculation. This paper explores the difference in the use of the two measures and defines a relative bias introduced with the geometric vs. the arithmetic mean. The magnitude of the bias is calculated in two linear models of possible exposure-response relationships. The theoretical basis for the choice of one mean over the other is then explored. It is suggested that when adopting a linear exposure response model, the arithmetic mean is the more appropriate measure. In other models, such as a linear-log (outcome is proportional to the logarithm of exposure) model, the geometric mean would be more appropriate.

摘要

在构建用于慢性职业病研究的暴露定量测量方法时,研究人员通常使用累积暴露量,其计算方式为特定时间段暴露浓度与每个个体在每个暴露类别中所花费时间的乘积之和。对于在此计算中使用暴露的几何平均值还是算术平均值,存在一些分歧且不够明确。本文探讨了这两种测量方法使用上的差异,并定义了几何平均值与算术平均值相比所引入的相对偏差。在两个可能的暴露 - 反应关系线性模型中计算了偏差的大小。然后探讨了选择一种平均值而非另一种平均值的理论依据。建议在采用线性暴露反应模型时,算术平均值是更合适的测量方法。在其他模型中,如线性 - 对数(结果与暴露的对数成比例)模型,几何平均值会更合适。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验