Department of Chemistry, University of California, Berkeley, California 94720, USA.
J Chem Phys. 2019 Dec 28;151(24):244123. doi: 10.1063/1.5128956.
We introduce a variational algorithm to estimate the likelihood of a rare event within a nonequilibrium molecular dynamics simulation through the evaluation of an optimal control force. Optimization of a control force within a chosen basis is made possible by explicit forms for the gradients of a cost function in terms of the susceptibility of driven trajectories to changes in variational parameters. We consider probabilities of time-integrated dynamical observables as characterized by their large deviation functions and find that in many cases, the variational estimate is quantitatively accurate. Additionally, we provide expressions to exactly correct the variational estimate that can be evaluated directly. We benchmark this algorithm against the numerically exact solution of a model of a driven particle in a periodic potential, where the control force can be represented with a complete basis. We then demonstrate the utility of the algorithm in a model of repulsive particles on a line, which undergo a dynamical phase transition, resulting in singular changes to the form of the optimal control force. In both systems, we find fast convergence and are able to evaluate large deviation functions with significant increases in statistical efficiency over alternative Monte Carlo approaches.
我们引入了一种变分算法,通过评估最优控制力来估计非平衡分子动力学模拟中罕见事件的可能性。通过显式形式表示成本函数的梯度与受控轨迹对变分参数变化的敏感性,在所选基内优化控制力成为可能。我们将时间积分动力学可观测量的概率表示为它们的大偏差函数,并发现在许多情况下,变分估计在定量上是准确的。此外,我们提供了可以直接评估的精确校正变分估计的表达式。我们将该算法与周期性势中驱动粒子模型的数值精确解进行了基准测试,其中控制力可以用完全基表示。然后,我们在一条线上的排斥粒子模型中展示了该算法的实用性,该模型经历了动力学相变,导致最优控制力的形式发生了奇异变化。在这两个系统中,我们发现收敛速度很快,并且能够评估大偏差函数,与替代的蒙特卡罗方法相比,统计效率有显著提高。