Suppr超能文献

相互作用隧道输运的非平衡热力学:变分巨势、密度泛函形式和稳态力的本质。

Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces.

机构信息

Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.

出版信息

J Phys Condens Matter. 2012 Oct 24;24(42):424219. doi: 10.1088/0953-8984/24/42/424219. Epub 2012 Oct 3.

Abstract

The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted 'DBT', provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys. Rev. B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the difference between the here-presented exact thermodynamic forces and the often-used electrostatic forces. Finally the paper documents an inherent adiabatic nature of the thermodynamic forces and observes that these are suited for a nonequilibrium implementation of the Born-Oppenheimer approximation.

摘要

隧道传输的标准公式基于开边界建模。在这种情况下,对非平衡格林函数或量子统计力学的守恒近似提供了一致但计算成本高的方法;或者,使用密度依赖的弹道传输计算(例如,Lang 1995 Phys. Rev. B 52 5335),这里称为“DBT”,提供了计算效率高(近似)的原子化电子行为描述,但到目前为止缺乏正式的理由。本文提出了一种完全相互作用的隧道的精确、变分非平衡热力学理论,并为冻结核 DBT 计算提供了严格的基础,作为对精确非平衡热力学密度泛函评估的最低阶近似。该理论从完整的电子非平衡量子统计力学开始,我确定了非平衡吉布斯自由能的算子,通常情况下,必须将其作为全相互作用多体动力学的隐式解来处理。我证明了非平衡热力学巨势的泛函的最小性质,因此唯一确定了该解作为精确的非平衡密度矩阵。我还表明,来自密切相关的Lippmann-Schwinger 碰撞密度泛函理论(Hyldgaard 2008 Phys. Rev. B 78 165109)的密度唯一性证明使得有可能将变分非平衡热力学描述表示为基于普遍电子密度泛函的单粒子公式;全非平衡单粒子公式改进了 DBT 方法,例如,通过更精细地考虑吉布斯自由能效应。我说明了对零温热力学巨势值的正式评估,我发现它与散射相移的变化密切相关,因此与 Friedel 密度振荡有关。本文还讨论了这里提出的精确热力学力与常用的静电力之间的区别。最后,本文记录了热力学力的固有绝热性质,并观察到这些力适合 Born-Oppenheimer 近似的非平衡实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验