Suppr超能文献

GPU 加速肝脏增强用于肿瘤分割。

GPU acceleration of liver enhancement for tumor segmentation.

机构信息

Department of Electronic and Computer Engineering, Universidad de Córdoba, Spain.

Norwegian Colour and Visual Computing Lab, Norwegian University of Science and Technology, Norway.

出版信息

Comput Methods Programs Biomed. 2020 Feb;184:105285. doi: 10.1016/j.cmpb.2019.105285. Epub 2019 Dec 17.

Abstract

BACKGROUND AND OBJECTIVE

Medical image segmentation plays a vital role in medical image analysis. There are many algorithms developed for medical image segmentation which are based on edge or region characteristics. These are dependent on the quality of the image. The contrast of a CT or MRI image plays an important role in identifying region of interest i.e. lesion(s). In order to enhance the contrast of image, clinicians generally use manual histogram adjustment technique which is based on 1D histogram specification. This is time consuming and results in poor distribution of pixels over the image. Cross modality based contrast enhancement is 2D histogram specification technique. This is robust and provides a more uniform distribution of pixels over CT image by exploiting the inner structure information from MRI image. This helps in increasing the sensitivity and accuracy of lesion segmentation from enhanced CT image. The sequential implementation of cross modality based contrast enhancement is slow. Hence we propose GPU acceleration of cross modality based contrast enhancement for tumor segmentation.

METHODS

The aim of this study is fast parallel cross modality based contrast enhancement for CT liver images. This includes pairwise 2D histogram, histogram equalization and histogram matching. The sequential implementation of the cross modality based contrast enhancement is computationally expensive and hence time consuming. We propose persistence and grid-stride loop based fast parallel contrast enhancement for CT liver images. We use enhanced CT liver image for the lesion or tumor segmentation. We implement the fast parallel gradient based dynamic seeded region growing for lesion segmentation.

RESULTS

The proposed parallel approach is 104.416 ( ±  5.166) times faster compared to the sequential implementation and increases the sensitivity and specificity of tumor segmentation.

CONCLUSION

The cross modality approach is inspired by 2D histogram specification which incorporates spatial information existing in both guidance and input images for remapping the input image intensity values. The cross modality based liver contrast enhancement improves the quality of tumor segmentation.

摘要

背景与目的

医学图像分割在医学图像分析中起着至关重要的作用。已经开发了许多基于边缘或区域特征的医学图像分割算法。这些算法都依赖于图像的质量。CT 或 MRI 图像的对比度对于识别感兴趣区域(即病变)起着重要作用。为了增强图像的对比度,临床医生通常使用基于一维直方图规范的手动直方图调整技术。这种方法既耗时又费力,并且会导致图像上的像素分布不均匀。基于跨模态的对比度增强是二维直方图规范技术。这种方法更稳健,通过利用 MRI 图像中的内部结构信息,可以在 CT 图像上提供更均匀的像素分布。这有助于提高增强 CT 图像中病变分割的灵敏度和准确性。基于跨模态的对比度增强的顺序实现速度较慢。因此,我们提出了基于 GPU 的跨模态对比度增强加速肿瘤分割。

方法

本研究的目的是快速并行的基于跨模态的 CT 肝脏图像对比度增强。这包括成对的二维直方图、直方图均衡化和直方图匹配。基于跨模态的对比度增强的顺序实现计算成本高,因此耗时。我们提出了基于持久和网格步长循环的快速并行 CT 肝脏图像对比度增强。我们使用增强后的 CT 肝脏图像进行病变或肿瘤分割。我们实现了基于快速并行梯度的动态种子区域生长的病变分割。

结果

与顺序实现相比,所提出的并行方法快 104.416(±5.166)倍,并且提高了肿瘤分割的灵敏度和特异性。

结论

跨模态方法受二维直方图规范的启发,该规范结合了指导图像和输入图像中的空间信息,用于重新映射输入图像的强度值。基于跨模态的肝脏对比度增强提高了肿瘤分割的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验