Faculty of Computers and Information, Beni-Suef University, Benisuef, Egypt; Scientific Research Group in Egypt (SRGE), Egypt(1).
Faculty of Computers and Information, Cairo University, Cairo, Egypt; Scientific Research Group in Egypt (SRGE), Egypt(1).
Artif Intell Med. 2019 Jun;97:105-117. doi: 10.1016/j.artmed.2018.11.007. Epub 2018 Dec 14.
Liver tumor segmentation from computed tomography (CT) images is a critical and challenging task. Due to the fuzziness in the liver pixel range, the neighboring organs of the liver with the same intensity, high noise and large variance of tumors. The segmentation process is necessary for the detection, identification, and measurement of objects in CT images. We perform an extensive review of the CT liver segmentation literature. Furthermore, in this paper, an improved segmentation approach based on watershed algorithm, neutrosophic sets (NS), and fast fuzzy c-mean clustering algorithm (FFCM) for CT liver tumor segmentation is proposed. To increase the contrast of the liver CT images, the intensity values are adjusted and high frequencies are removed using histogram equalization and median filter approach. It is followed by transforming the CT image to NS domain, which is described using three subsets (percentage of truth T, the percentage of indeterminacy I, and percentage of falsity F). The obtained NS image is enhanced by adaptive threshold and morphological operators to focus on liver parenchyma. The enhanced NS image passed to a watershed algorithm for post-segmentation process and liver parenchyma is extracted using the connected component algorithm. Finally, the liver tumors are segmented from the segmented liver using fast fuzzy c-mean (FFCM). A quantitative analysis is carried out to evaluate segmentation results using six different indices. The results show that the overall accuracy offered by the employed neutrosophic sets is accurate, less time consuming, less sensitive to noise and performs better on non-uniform CT images.
肝脏肿瘤的 CT 图像分割是一项关键且具有挑战性的任务。由于肝脏像素范围的模糊性、肝脏相邻器官的同强度、高噪声以及肿瘤的方差较大,分割过程对于 CT 图像中物体的检测、识别和测量是必要的。我们对 CT 肝脏分割文献进行了广泛的回顾。此外,本文提出了一种基于分水岭算法、 Neutrosophic 集(NS)和快速模糊 c-均值聚类算法(FFCM)的 CT 肝脏肿瘤分割改进方法。为了提高肝脏 CT 图像的对比度,使用直方图均衡化和中值滤波器方法调整强度值并去除高频。然后将 CT 图像转换为 NS 域,该域使用三个子集(真实性 T 的百分比、不确定性 I 的百分比和假阴性 F 的百分比)进行描述。获得的 NS 图像通过自适应阈值和形态学算子进行增强,以专注于肝脏实质。增强的 NS 图像传递到分水岭算法进行后分割过程,并使用连通分量算法提取肝脏实质。最后,使用快速模糊 c-均值(FFCM)从分割的肝脏中分割肝脏肿瘤。使用六个不同的指标进行定量分析,以评估分割结果。结果表明,所采用的 Neutrosophic 集提供的整体准确性更高、耗时更少、对噪声的敏感度更低,并且在非均匀 CT 图像上表现更好。
Comput Methods Programs Biomed. 2017-11
Comput Methods Programs Biomed. 2021-4
Comput Methods Programs Biomed. 2017-5-15
Annu Int Conf IEEE Eng Med Biol Soc. 2015-8
PeerJ Comput Sci. 2024-1-25
Sensors (Basel). 2023-2-24
Entropy (Basel). 2022-6-2