文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 Neutrosophic Sets、快速模糊 C-均值和自适应分水岭算法的 CT 肝脏肿瘤分割混合方法。

CT liver tumor segmentation hybrid approach using neutrosophic sets, fast fuzzy c-means and adaptive watershed algorithm.

机构信息

Faculty of Computers and Information, Beni-Suef University, Benisuef, Egypt; Scientific Research Group in Egypt (SRGE), Egypt(1).

Faculty of Computers and Information, Cairo University, Cairo, Egypt; Scientific Research Group in Egypt (SRGE), Egypt(1).

出版信息

Artif Intell Med. 2019 Jun;97:105-117. doi: 10.1016/j.artmed.2018.11.007. Epub 2018 Dec 14.


DOI:10.1016/j.artmed.2018.11.007
PMID:30558825
Abstract

Liver tumor segmentation from computed tomography (CT) images is a critical and challenging task. Due to the fuzziness in the liver pixel range, the neighboring organs of the liver with the same intensity, high noise and large variance of tumors. The segmentation process is necessary for the detection, identification, and measurement of objects in CT images. We perform an extensive review of the CT liver segmentation literature. Furthermore, in this paper, an improved segmentation approach based on watershed algorithm, neutrosophic sets (NS), and fast fuzzy c-mean clustering algorithm (FFCM) for CT liver tumor segmentation is proposed. To increase the contrast of the liver CT images, the intensity values are adjusted and high frequencies are removed using histogram equalization and median filter approach. It is followed by transforming the CT image to NS domain, which is described using three subsets (percentage of truth T, the percentage of indeterminacy I, and percentage of falsity F). The obtained NS image is enhanced by adaptive threshold and morphological operators to focus on liver parenchyma. The enhanced NS image passed to a watershed algorithm for post-segmentation process and liver parenchyma is extracted using the connected component algorithm. Finally, the liver tumors are segmented from the segmented liver using fast fuzzy c-mean (FFCM). A quantitative analysis is carried out to evaluate segmentation results using six different indices. The results show that the overall accuracy offered by the employed neutrosophic sets is accurate, less time consuming, less sensitive to noise and performs better on non-uniform CT images.

摘要

肝脏肿瘤的 CT 图像分割是一项关键且具有挑战性的任务。由于肝脏像素范围的模糊性、肝脏相邻器官的同强度、高噪声以及肿瘤的方差较大,分割过程对于 CT 图像中物体的检测、识别和测量是必要的。我们对 CT 肝脏分割文献进行了广泛的回顾。此外,本文提出了一种基于分水岭算法、 Neutrosophic 集(NS)和快速模糊 c-均值聚类算法(FFCM)的 CT 肝脏肿瘤分割改进方法。为了提高肝脏 CT 图像的对比度,使用直方图均衡化和中值滤波器方法调整强度值并去除高频。然后将 CT 图像转换为 NS 域,该域使用三个子集(真实性 T 的百分比、不确定性 I 的百分比和假阴性 F 的百分比)进行描述。获得的 NS 图像通过自适应阈值和形态学算子进行增强,以专注于肝脏实质。增强的 NS 图像传递到分水岭算法进行后分割过程,并使用连通分量算法提取肝脏实质。最后,使用快速模糊 c-均值(FFCM)从分割的肝脏中分割肝脏肿瘤。使用六个不同的指标进行定量分析,以评估分割结果。结果表明,所采用的 Neutrosophic 集提供的整体准确性更高、耗时更少、对噪声的敏感度更低,并且在非均匀 CT 图像上表现更好。

相似文献

[1]
CT liver tumor segmentation hybrid approach using neutrosophic sets, fast fuzzy c-means and adaptive watershed algorithm.

Artif Intell Med. 2018-12-14

[2]
Segmentation and Diagnosis of Liver Carcinoma Based on Adaptive Scale-Kernel Fuzzy Clustering Model for CT Images.

J Med Syst. 2019-10-10

[3]
Combined endeavor of Neutrosophic Set and Chan-Vese model to extract accurate liver image from CT scan.

Comput Methods Programs Biomed. 2017-11

[4]
Automatic segmentation of tumors in B-Mode breast ultrasound images using information gain based neutrosophic clustering.

J Xray Sci Technol. 2018

[5]
Dynamically learned PSO based neighborhood influenced fuzzy c-means for pre-treatment and post-treatment organ segmentation from CT images.

Comput Methods Programs Biomed. 2021-4

[6]
An Improved Fuzzy Connectedness Method for Automatic Three-Dimensional Liver Vessel Segmentation in CT Images.

J Healthc Eng. 2018-10-29

[7]
Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration.

Med Phys. 2016-3

[8]
Analysis of Abdominal Computed Tomography Images for Automatic Liver Cancer Diagnosis Using Image Processing Algorithm.

Curr Med Imaging Rev. 2019

[9]
A fourth order PDE based fuzzy c- means approach for segmentation of microscopic biopsy images in presence of Poisson noise for cancer detection.

Comput Methods Programs Biomed. 2017-5-15

[10]
Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm.

Annu Int Conf IEEE Eng Med Biol Soc. 2015-8

引用本文的文献

[1]
ONDL: An optimized Neutrosophic Deep Learning model for classifying waste for sustainability.

PLoS One. 2024

[2]
A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images.

Cancer Imaging. 2024-3-26

[3]
SEU-Net: multi-scale U-Net with SE attention mechanism for liver occupying lesion CT image segmentation.

PeerJ Comput Sci. 2024-1-25

[4]
Residual Deformable Split Channel and Spatial U-Net for Automated Liver and Liver Tumour Segmentation.

J Digit Imaging. 2023-10

[5]
Performance and clinical applicability of machine learning in liver computed tomography imaging: a systematic review.

Eur Radiol. 2023-10

[6]
Multi-Attention Segmentation Networks Combined with the Sobel Operator for Medical Images.

Sensors (Basel). 2023-2-24

[7]
Mixed reality navigation training system for liver surgery based on a high-definition human cross-sectional anatomy data set.

Cancer Med. 2023-4

[8]
A lightweight neural network with multiscale feature enhancement for liver CT segmentation.

Sci Rep. 2022-8-19

[9]
Early Prediction of Cerebral Computed Tomography under Intelligent Segmentation Algorithm Combined with Serological Indexes for Hematoma Enlargement after Intracerebral Hemorrhage.

Comput Math Methods Med. 2022

[10]
NeDSeM: Neutrosophy Domain-Based Segmentation Method for Malignant Melanoma Images.

Entropy (Basel). 2022-6-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索