Ling Qing-Lan, Akasaka Hironari, Chen Chang, Haile Colin N, Winoske Kevin, Ruan Ke-He
The Center for Experimental Therapeutics and Pharmacoinformatics, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health and Biomedical Sciences Building 2, 4849 Calhoun Road, Room 3044, Houston, TX, 77204-5037, USA.
Department of Anesthesia, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
J Neuroimmune Pharmacol. 2020 Jun;15(2):292-308. doi: 10.1007/s11481-019-09896-5. Epub 2020 Jan 3.
Cellular arachidonic acid (AA), an unsaturated fatty acid found ubiquitously in plasma membranes, is metabolized to different prostanoids, such as prostacyclin (PGI) and prostaglandin E (PGE), by the three-step reactions coupling the upstream cyclooxygenase (COX) isoforms (COX-1 and COX-2) with the corresponding individual downstream synthases. While the vascular actions of these prostanoids are well-characterized, their specific roles in the hippocampus, a major brain area for memory, are poorly understood. The major obstacle for its understanding in the brain was to mimic the biosynthesis of each prostanoid. To solve the problem, we utilized Single-Chain Hybrid Enzyme Complexes (SCHECs), which could successfully control cellular AA metabolites to the desired PGI or PGE. Our in vitro studies suggested that neurons with higher PGI content and lower PGE content exhibited survival protection and resistance to Amyloid-β-induced neurotoxicity. Further extending to an in vivo model, the hybrid of PGI-producing transgenic mice and Alzheimer's disease (AD) mice showed restored long-term memory. These findings suggested that the vascular prostanoids, PGI and PGE, exerted significant regulatory influences on neuronal protection (by PGI), or damage (by PGE) in the hippocampus, and raised a concern that the wide uses of aspirin in cardiovascular diseases may exert negative impacts on neurodegenerative protection. Graphic Abstract Our study intended to understand the crosstalk of prostanoids in the hippocampus, a major brain area impacted in AD, by using hybrid enzymes to redirect the synthesis of prostanoids to PGE and PGI, respectively. Our data indicated that during inflammation, the vascular mediators, PGI and PGE, exerted significant regulatory influences on neuronal protection (by PGI), or damage (by PGE) in the hippocampus. These findings also raised a concern that the widely uses of non-steroidal anti-inflammatory drugs in cardiovascular diseases may exert negative impacts on neurodegenerative protection.
细胞花生四烯酸(AA)是一种普遍存在于质膜中的不饱和脂肪酸,通过将上游环氧化酶(COX)同工型(COX-1和COX-2)与相应的下游合成酶偶联的三步反应,代谢为不同的前列腺素,如前列环素(PGI)和前列腺素E(PGE)。虽然这些前列腺素的血管作用已得到充分表征,但它们在海马体(记忆的主要脑区)中的具体作用却知之甚少。在大脑中理解这一问题的主要障碍是模拟每种前列腺素的生物合成。为了解决这个问题,我们利用了单链杂交酶复合物(SCHECs),它可以成功地将细胞AA代谢物控制为所需的PGI或PGE。我们的体外研究表明,PGI含量较高而PGE含量较低的神经元表现出存活保护和对淀粉样β诱导的神经毒性的抗性。进一步扩展到体内模型,产生PGI的转基因小鼠与阿尔茨海默病(AD)小鼠的杂交显示长期记忆恢复。这些发现表明,血管前列腺素PGI和PGE对海马体中的神经元保护(通过PGI)或损伤(通过PGE)具有显著的调节作用,并引发了人们对阿司匹林在心血管疾病中的广泛使用可能对神经退行性保护产生负面影响的担忧。图形摘要我们的研究旨在通过使用杂交酶分别将前列腺素的合成重定向为PGE和PGI,来了解在AD中受影响的主要脑区海马体中前列腺素的相互作用。我们的数据表明,在炎症过程中,血管介质PGI和PGE对海马体中的神经元保护(通过PGI)或损伤(通过PGE)具有显著的调节作用。这些发现还引发了人们对非甾体抗炎药在心血管疾病中的广泛使用可能对神经退行性保护产生负面影响的担忧。