Suppr超能文献

铜绿假单胞菌翻译起始因子3的氢、碳和氮共振归属

H, C and N resonance assignments of translation initiation factor 3 from Pseudomonas aeruginosa.

作者信息

Li Libo, Palmer Stephanie O, Gomez Elizabeth A, Mendiola Frank, Wang Tianzhi, Bullard James M, Zhang Yonghong

机构信息

Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA.

Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China.

出版信息

Biomol NMR Assign. 2020 Apr;14(1):93-97. doi: 10.1007/s12104-020-09926-x. Epub 2020 Jan 4.

Abstract

Translation initiation factor 3 (IF3) is one of the three protein factors that bind to the small ribosomal subunit and it is required for the initiation of protein biosynthesis in bacteria. IF3 contains two independent domains, N- and C-terminal domains, which are connected by a lysine-rich interdomain linker. IF3 undergoes large-scale movements and conformational changes upon binding to the 30S subunit and also during the functional regulation of initiation. However, the precise dynamic interplay of the two domains and the molecular mechanism of IF3 is not well understood. A high-resolution 3D structure of a complete IF3 in bacteria has not been solved. Pseudomonas aeruginosa, a gram-negative opportunistic pathogen, is a primary cause of nosocomial infections in humans. Here we report the NMR chemical shift assignments of IF3 from P. aeruginosa as the first step toward NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data identified nine β-strands and four α-helices arranged in the sequential order β1-β2-α1-β3-β4-α2-β5-α3-β6-α4-β7-β8-β9.

摘要

翻译起始因子3(IF3)是与小核糖体亚基结合的三种蛋白质因子之一,细菌中蛋白质生物合成的起始需要它。IF3包含两个独立的结构域,即N端和C端结构域,它们由富含赖氨酸的结构域间连接子相连。IF3在与30S亚基结合时以及起始功能调节过程中会发生大规模运动和构象变化。然而,这两个结构域之间精确的动态相互作用以及IF3的分子机制尚未得到很好的理解。细菌中完整IF3的高分辨率三维结构尚未解析出来。铜绿假单胞菌是一种革兰氏阴性机会致病菌,是人类医院感染的主要原因。在此,我们报告了来自铜绿假单胞菌的IF3的核磁共振化学位移归属,作为进行核磁共振结构测定和相互作用研究的第一步。从核磁共振化学位移数据推导的二级结构分析确定了九条β链和四条α螺旋,其排列顺序为β1-β2-α1-β3-β4-α2-β5-α3-β6-α4-β7-β8-β9。

相似文献

1
H, C and N resonance assignments of translation initiation factor 3 from Pseudomonas aeruginosa.
Biomol NMR Assign. 2020 Apr;14(1):93-97. doi: 10.1007/s12104-020-09926-x. Epub 2020 Jan 4.
3
Solution structure of protein synthesis initiation factor 1 from Pseudomonas aeruginosa.
Protein Sci. 2016 Dec;25(12):2290-2296. doi: 10.1002/pro.3042. Epub 2016 Sep 26.
4
H, C and N resonance assignments and structure prediction of translation initiation factor 1 from Clostridium difficile.
Biomol NMR Assign. 2019 Apr;13(1):91-95. doi: 10.1007/s12104-018-9858-8. Epub 2018 Oct 28.
5
Backbone and side chain NMR assignments for the ribosome maturation factor P (RimP) from Staphylococcus aureus.
Biomol NMR Assign. 2022 Oct;16(2):373-377. doi: 10.1007/s12104-022-10106-2. Epub 2022 Sep 7.
8
The dynamic cycle of bacterial translation initiation factor IF3.
Nucleic Acids Res. 2021 Jul 9;49(12):6958-6970. doi: 10.1093/nar/gkab522.
9
A single mutation in the IF3 N-terminal domain perturbs the fidelity of translation initiation at three levels.
J Mol Biol. 2008 Nov 28;383(5):937-44. doi: 10.1016/j.jmb.2008.09.012. Epub 2008 Sep 16.
10
The real-time path of translation factor IF3 onto and off the ribosome.
Mol Cell. 2007 Jan 26;25(2):285-96. doi: 10.1016/j.molcel.2006.12.011.

本文引用的文献

1
The dynamic cycle of bacterial translation initiation factor IF3.
Nucleic Acids Res. 2021 Jul 9;49(12):6958-6970. doi: 10.1093/nar/gkab522.
2
Identification and Characterization of Chemical Compounds that Inhibit Leucyl-tRNA Synthetase from .
Curr Drug Discov Technol. 2020;17(1):119-130. doi: 10.2174/1570163815666180808095600.
3
Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis.
BMC Pulm Med. 2018 May 22;18(1):83. doi: 10.1186/s12890-018-0638-0.
4
Non-canonical Binding Site for Bacterial Initiation Factor 3 on the Large Ribosomal Subunit.
Cell Rep. 2017 Sep 26;20(13):3113-3122. doi: 10.1016/j.celrep.2017.09.012.
5
Identification of Chemical Compounds That Inhibit Protein Synthesis in Pseudomonas aeruginosa.
SLAS Discov. 2017 Jul;22(6):775-782. doi: 10.1177/1087057116679591. Epub 2016 Nov 21.
6
Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation.
Cell. 2016 Sep 22;167(1):133-144.e13. doi: 10.1016/j.cell.2016.08.074.
7
Discovery and Analysis of Natural-Product Compounds Inhibiting Protein Synthesis in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2016 Jul 22;60(8):4820-9. doi: 10.1128/AAC.00800-16. Print 2016 Aug.
8
Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes.
Expert Rev Pharmacoecon Outcomes Res. 2010 Aug;10(4):441-51. doi: 10.1586/erp.10.49.
9
TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
J Biomol NMR. 2009 Aug;44(4):213-23. doi: 10.1007/s10858-009-9333-z. Epub 2009 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验