Suppr超能文献

TALOS+:一种利用核磁共振化学位移预测蛋白质主链扭转角的混合方法。

TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.

作者信息

Shen Yang, Delaglio Frank, Cornilescu Gabriel, Bax Ad

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.

出版信息

J Biomol NMR. 2009 Aug;44(4):213-23. doi: 10.1007/s10858-009-9333-z. Epub 2009 Jun 23.

Abstract

NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between 13C, 15N and 1H chemical shifts and backbone torsion angles phi and psi (Cornilescu et al. J Biomol NMR 13 289-302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted phi and psi angles, equals +/-13 degrees . Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.

摘要

蛋白质中的核磁共振化学位移在很大程度上取决于局部结构。TALOS程序建立了13C、15N和1H化学位移与主链扭转角phi和psi之间的经验关系(Cornilescu等人,《生物分子核磁共振杂志》13:289 - 302,1999年)。将原始的20个蛋白质数据库扩展到200个蛋白质后,可预测主链角度的残基比例从65%提高到了74%,同时错误率从3%降低到了2.5%。在数据库片段选择过程中添加一个两层神经网络过滤器构成了新程序TALOS +的基础,该程序进一步将预测率提高到88.5%,且不增加错误率。排除TALOS +做出的预测与晶体状态下观察到的结果有很大差异的2.5%的残基后,预测的phi和psi角的准确度为±13度。预测结果与晶体结构之间的较大差异主要局限于环区,并且在少数有多个X射线结构的情况下,这些残基在不同结构中常常处于不同状态。TALOS +的输出包括对化学位移缺失的单个残基的预测,并且该程序的神经网络组件还能以较高的准确度预测二级结构。

相似文献

1
TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
J Biomol NMR. 2009 Aug;44(4):213-23. doi: 10.1007/s10858-009-9333-z. Epub 2009 Jun 23.
2
Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks.
J Biomol NMR. 2013 Jul;56(3):227-41. doi: 10.1007/s10858-013-9741-y. Epub 2013 Jun 2.
3
4
5
Accurate prediction of protein torsion angles using chemical shifts and sequence homology.
Magn Reson Chem. 2006 Jul;44 Spec No:S158-67. doi: 10.1002/mrc.1832.
7
Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology.
J Biomol NMR. 2007 Aug;38(4):289-302. doi: 10.1007/s10858-007-9166-6. Epub 2007 Jul 4.
8
SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database.
J Biomol NMR. 2009 Mar;43(3):179-85. doi: 10.1007/s10858-009-9301-7. Epub 2009 Feb 18.
10
Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts.
J Biomol NMR. 2003 Jul;26(3):215-40. doi: 10.1023/a:1023812930288.

引用本文的文献

1
H, N, and C Resonance Assignment of Human Heat Shock Protein 10.
Res Sq. 2025 Jun 25:rs.3.rs-6908495. doi: 10.21203/rs.3.rs-6908495/v1.
2
NMR in the Age of Modern Biomedical Research and Drug Discovery.
J Mol Biol. 2025 Jun 23:169302. doi: 10.1016/j.jmb.2025.169302.
3
Structural Transition from Closed to Open for the Influenza A M2 Proton Channel as Observed by Proton-Detected Solid-State NMR.
J Am Chem Soc. 2025 Aug 6;147(31):27537-27551. doi: 10.1021/jacs.5c05111. Epub 2025 Jun 20.
4
AlphaDesign: a de novo protein design framework based on AlphaFold.
Mol Syst Biol. 2025 Jun 17. doi: 10.1038/s44320-025-00119-z.
6
The SH protein of mumps virus is a druggable pentameric viroporin.
Sci Adv. 2025 Jun 6;11(23):eads3071. doi: 10.1126/sciadv.ads3071.
7
A low-complexity linker as a driver of intra- and intermolecular interactions in DNAJB chaperones.
Nat Commun. 2025 May 31;16(1):5070. doi: 10.1038/s41467-025-60063-2.
8
Structural plasticity of the FOXO-DBD:p53-TAD interaction.
Nat Commun. 2025 May 27;16(1):4907. doi: 10.1038/s41467-025-59106-5.
9
Unraveling structural transitions and kinetics along the fold-switching pathway of the RfaH C-terminal domain using exchange-based NMR.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2506441122. doi: 10.1073/pnas.2506441122. Epub 2025 May 14.

本文引用的文献

1
De novo protein structure generation from incomplete chemical shift assignments.
J Biomol NMR. 2009 Feb;43(2):63-78. doi: 10.1007/s10858-008-9288-5. Epub 2008 Nov 26.
2
Solution NMR structure determination of proteins revisited.
J Biomol NMR. 2008 Nov;42(3):155-8. doi: 10.1007/s10858-008-9277-8. Epub 2008 Oct 1.
3
Quantum chemical 13C(alpha) chemical shift calculations for protein NMR structure determination, refinement, and validation.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14389-94. doi: 10.1073/pnas.0807105105. Epub 2008 Sep 11.
4
CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W496-502. doi: 10.1093/nar/gkn305. Epub 2008 May 30.
5
Consistent blind protein structure generation from NMR chemical shift data.
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4685-90. doi: 10.1073/pnas.0800256105. Epub 2008 Mar 7.
8
Refined solution structure of the 82-kDa enzyme malate synthase G from joint NMR and synchrotron SAXS restraints.
J Biomol NMR. 2008 Feb;40(2):95-106. doi: 10.1007/s10858-007-9211-5. Epub 2007 Nov 16.
9
Application of the random coil index to studying protein flexibility.
J Biomol NMR. 2008 Jan;40(1):31-48. doi: 10.1007/s10858-007-9208-0. Epub 2007 Nov 6.
10
Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology.
J Biomol NMR. 2007 Aug;38(4):289-302. doi: 10.1007/s10858-007-9166-6. Epub 2007 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验