Department of Environmental Health and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States.
Department of Civil and Environmental Engineering , University of California, Berkeley , Berkeley , California 94720 , United States.
Environ Sci Technol. 2020 Jan 21;54(2):826-834. doi: 10.1021/acs.est.9b04926. Epub 2020 Jan 6.
Despite decades of research on the fate of phenolic compounds when water is disinfected with hypochlorous acid (HOCl), there is still considerable uncertainty regarding the formation mechanisms and identity of ring cleavage products, especially at higher chlorine doses. This study focuses on the formation of electrophilic ring cleavage products-a class of compounds that poses potential health risks at relatively low concentrations-from the reactions of phenols with chlorine. By monitoring the formation of products of reactions between ring cleavage products and the model nucleophile -α-acetyl-lysine, we identified the α,β-unsaturated dialdehyde 2-butene-1,4-dial (BDA) and its chlorinated analogue, chloro-2-butene-1,4-dial (Cl-BDA), after the chlorination of phenol, para- and ortho-substituted chlorophenols (2-Cl, 4-Cl, 2,4-diCl-, 2,6-diCl, and 2,4,6-triCl-phenol), and 3,5-di-Cl-catechol. Maximum yields of BDA were observed when chlorine was present in large excess (HOCl/phenol ratios of 30:1 to 50:1), with yields ranging from 18% for phenol to 46% for 3,5-diCl-catechol. BDA and Cl-BDA formation was also observed during the chlorination of brominated phenols. For methyl-substituted phenols, the presence of methyl substituents in both positions ortho to the hydroxy group inhibited BDA and Cl-BDA formation, but the chlorination of cresols and 2,3-dimethylphenol yielded methyl- and dimethyl-BDA species. This study provides new insights into the formation of reactive and toxic electrophiles during chlorine disinfection. It also provides evidence for the importance of phenoxy radicals produced by one-electron transfer reactions initiated by chlorine in the production of dicarbonyl ring cleavage products.
尽管几十年来一直在研究水中次氯酸(HOCl)消毒时酚类化合物的命运,但对于环裂解产物的形成机制和身份仍存在相当大的不确定性,尤其是在较高的氯剂量下。本研究重点研究了酚类化合物与氯反应生成亲电环裂解产物(一类在相对较低浓度下具有潜在健康风险的化合物)的形成机制。通过监测环裂解产物与模型亲核试剂-α-乙酰赖氨酸之间反应产物的形成,我们确定了α,β-不饱和二醛 2-丁烯-1,4-二醛(BDA)及其氯化类似物氯代-2-丁烯-1,4-二醛(Cl-BDA),这是在酚、对氯和邻氯取代酚(2-Cl、4-Cl、2,4-二氯、2,6-二氯和 2,4,6-三氯酚)和 3,5-二-Cl-儿茶酚氯化后产生的。当氯大量存在时(HOCl/酚的比例为 30:1 至 50:1),观察到 BDA 的最大产率,从酚的 18%到 3,5-二-Cl-儿茶酚的 46%。在溴代酚的氯化过程中也观察到了 BDA 和 Cl-BDA 的形成。对于甲基取代的酚,羟基邻位的两个位置存在甲基取代基会抑制 BDA 和 Cl-BDA 的形成,但甲酚和 2,3-二甲酚的氯化生成了甲基和二甲基-BDA 物质。本研究为氯消毒过程中活性和有毒亲电体的形成提供了新的见解。它还为氯引发的单电子转移反应产生的酚氧基自由基在二羰基环裂解产物生成中的重要性提供了证据。