Suppr超能文献

用于纳米工程的丝状高分辨率电探针。

Filamentary High-Resolution Electrical Probes for Nanoengineering.

作者信息

Soh Eugene J H, Sarwat Syed Ghazi, Mazzotta Giulio, Porter Benjamin F, Riede Moritz, Nicholas Robin, Kim Judy S, Bhaskaran Harish

机构信息

Department of Materials , University of Oxford , Oxford OX1 3PH , United Kingdom.

Clarendon Laboratory, Department of Physics , University of Oxford , Oxford OX1 3PU , United Kingdom.

出版信息

Nano Lett. 2020 Feb 12;20(2):1067-1073. doi: 10.1021/acs.nanolett.9b04302. Epub 2020 Jan 17.

Abstract

Confining electric fields to a nanoscale region is challenging yet crucial for applications such as high-resolution probing of electrical properties of materials and electric-field manipulation of nanoparticles. State-of-the-art techniques involving atomic force microscopy typically have a lateral resolution limit of tens of nanometers due to limitations in the probe geometry and stray electric fields that extend over space. Engineering the probes is the most direct approach to improving this resolution limit. However, current methods to fabricate high-resolution probes, which can effectively confine the electric fields laterally, involve expensive and sophisticated probe manipulation, which has limited the use of this approach. Here, we demonstrate that nanoscale phase switching of configurable thin films on probes can result in high-resolution electrical probes. These configurable coatings can be both germanium-antimony-tellurium (GST) as well as amorphous-carbon, materials known to undergo electric field-induced nonvolatile, yet reversible switching. By forming a localized conductive filament through phase transition, we demonstrate a spatial resolution of electrical field beyond the geometrical limitations of commercial platinum probes (i.e., an improvement of ∼48%). We then utilize these confined electric fields to manipulate nanoparticles with single nanoparticle precision via dielectrophoresis. Our results advance the field of nanomanufacturing and metrology with direct applications for pick and place assembly at the nanoscale.

摘要

将电场限制在纳米尺度区域具有挑战性,但对于诸如材料电学性质的高分辨率探测以及纳米颗粒的电场操控等应用而言至关重要。由于探针几何形状的限制以及在空间中延伸的杂散电场,涉及原子力显微镜的现有技术通常具有数十纳米的横向分辨率极限。设计探针是提高这一分辨率极限的最直接方法。然而,目前用于制造能够有效横向限制电场的高分辨率探针的方法,涉及昂贵且复杂的探针操控,这限制了该方法的应用。在此,我们证明探针上可配置薄膜的纳米级相切换能够产生高分辨率电探针。这些可配置涂层既可以是锗锑碲(GST),也可以是非晶碳,这些材料已知会经历电场诱导的非易失性但可逆的切换。通过相变形成局部导电细丝,我们展示了电场的空间分辨率超越了商用铂探针的几何限制(即提高了约48%)。然后,我们利用这些受限电场通过介电泳以单纳米颗粒精度操控纳米颗粒。我们的结果推动了纳米制造和计量学领域的发展,可直接应用于纳米尺度的拾取和放置组装。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验