Suppr超能文献

基于非线性动态演化的复杂网络中层次化群落的精确检测

Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution.

作者信息

Zhuo Zhao, Cai Shi-Min, Tang Ming, Lai Ying-Cheng

机构信息

Web Sciences Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

Institute of Fundamental and Frontier Sciences and Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China.

出版信息

Chaos. 2018 Apr;28(4):043119. doi: 10.1063/1.5025646.

Abstract

One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.

摘要

网络科学中最具挑战性的问题之一是在不同层次尺度上准确检测社区。大多数现有方法基于结构分析和操作,这是NP难问题。我们提出了一种基于动态演化的替代方法来解决这个问题。其基本原理是在网络中的所有节点上通过一种通用耦合方案以计算方式实现一个非线性动态过程,从而创建一个网络动态系统。在适当的系统设置和一个可调节的控制参数下,网络的社区结构将从系统的动态演化中“显现”或自然出现。随着控制参数的系统变化,可以揭示不同尺度上的社区层次结构。作为这一通用原理的具体示例,我们利用聚类同步作为一种动态机制,通过它可以揭示层次化的社区结构。特别地,对于相当任意的非线性节点动力学和耦合方案的选择,从所有节点的动态状态完全同步的全局同步状态降低耦合参数,可以导致一种较弱类型的以簇形式组织的同步。我们证明了存在耦合参数的最优选择,对于这些选择,同步簇编码了关于网络层次化社区结构的准确信息。我们使用一类具有两种不同层次社区的标准基准模块化网络以及一些来自现实世界的实证网络来测试和验证我们的方法。我们的方法在计算上极其高效,完全消除了与先前方法相关的NP难问题。利用动态演化来揭示不同尺度上隐藏的社区组织的基本原理代表了一种解决复杂网络中社区检测问题的“变革性”方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验