Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada.
Department of Computer Science, Ryerson University, Toronto, Canada.
Pituitary. 2020 Jun;23(3):273-293. doi: 10.1007/s11102-019-01026-x.
To provide an overview of fundamental concepts in machine learning (ML), review the literature on ML applications in imaging analysis of pituitary tumors for the last 10 years, and highlight the future directions on potential applications of ML for pituitary tumor patients.
We presented an overview of the fundamental concepts in ML, its various stages used in healthcare, and highlighted the key components typically present in an imaging-based tumor analysis pipeline. A search was conducted across four databases (PubMed, Ovid, Embase, and Google Scholar) to gather research articles from the past 10 years (2009-2019) involving imaging related to pituitary tumor and ML. We grouped the studies by imaging modalities and analyzed the ML tasks in terms of the data inputs, reference standards, methodologies, and limitations.
Of the 16 studies included in our analysis, 10 appeared in 2018-2019. Most of the studies utilized retrospective data and followed a semi-automatic ML pipeline. The studies included use of magnetic resonance imaging (MRI), facial photographs, surgical microscopic video, spectrometry, and spectroscopy imaging. The objectives of the studies covered 14 distinct applications and majority of the studies addressed a binary classification problem. Only five of the 11 MRI-based studies had an external validation or a holdout set to test the performance of a final trained model.
Through our concise evaluation and comparison of the studies using the concepts presented, we highlight future directions so that potential ML applications using different imaging modalities can be developed to benefit the clinical care of pituitary tumor patients.
提供机器学习(ML)基本概念概述,回顾过去 10 年中 ML 在垂体瘤影像分析中的应用文献,并强调 ML 在垂体瘤患者中潜在应用的未来方向。
我们介绍了 ML 的基本概念、其在医疗保健中的各个阶段,并强调了基于成像的肿瘤分析管道中通常存在的关键组件。在四个数据库(PubMed、Ovid、Embase 和 Google Scholar)中进行了搜索,以收集过去 10 年(2009-2019 年)涉及垂体瘤和 ML 的影像研究。我们按成像方式对研究进行分组,并根据数据输入、参考标准、方法和局限性分析 ML 任务。
在我们的分析中,有 16 项研究被纳入,其中 10 项发表于 2018-2019 年。大多数研究都使用了回顾性数据,并遵循了半自动 ML 管道。这些研究包括磁共振成像(MRI)、面部照片、手术显微镜视频、光谱学和光谱成像的使用。研究的目的涵盖了 14 个不同的应用,其中大多数研究都涉及二元分类问题。在 11 项基于 MRI 的研究中,只有 5 项具有外部验证或保留集,以测试最终训练模型的性能。
通过使用所提出的概念对研究进行简明的评估和比较,我们强调了未来的方向,以便可以开发使用不同成像方式的潜在 ML 应用,从而使垂体瘤患者的临床护理受益。