Suppr超能文献

生物多样性与生态系统功能研究的多营养级视角

A multitrophic perspective on biodiversity-ecosystem functioning research.

作者信息

Eisenhauer Nico, Schielzeth Holger, Barnes Andrew D, Barry Kathryn, Bonn Aletta, Brose Ulrich, Bruelheide Helge, Buchmann Nina, Buscot François, Ebeling Anne, Ferlian Olga, Freschet Grégoire T, Giling Darren P, Hättenschwiler Stephan, Hillebrand Helmut, Hines Jes, Isbell Forest, Koller-France Eva, König-Ries Birgitta, de Kroon Hans, Meyer Sebastian T, Milcu Alexandru, Müller Jörg, Nock Charles A, Petermann Jana S, Roscher Christiane, Scherber Christoph, Scherer-Lorenzen Michael, Schmid Bernhard, Schnitzer Stefan A, Schuldt Andreas, Tscharntke Teja, Türke Manfred, van Dam Nicole M, van der Plas Fons, Vogel Anja, Wagg Cameron, Wardle David A, Weigelt Alexandra, Weisser Wolfgang W, Wirth Christian, Jochum Malte

机构信息

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.

Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany.

出版信息

Adv Ecol Res. 2019;61:1-54. doi: 10.1016/bs.aecr.2019.06.001. Epub 2019 Jul 23.

Abstract

Concern about the functional consequences of unprecedented loss in biodiversity has prompted biodiversity-ecosystem functioning (BEF) research to become one of the most active fields of ecological research in the past 25 years. Hundreds of experiments have manipulated biodiversity as an independent variable and found compelling support that the functioning of ecosystems increases with the diversity of their ecological communities. This research has also identified some of the mechanisms underlying BEF relationships, some context-dependencies of the strength of relationships, as well as implications for various ecosystem services that mankind depends upon. In this paper, we argue that a multitrophic perspective of biotic interactions in random and non-random biodiversity change scenarios is key to advance future BEF research and to address some of its most important remaining challenges. We discuss that the study and the quantification of multitrophic interactions in space and time facilitates scaling up from small-scale biodiversity manipulations and ecosystem function assessments to management-relevant spatial scales across ecosystem boundaries. We specifically consider multitrophic conceptual frameworks to understand and predict the context-dependency of BEF relationships. Moreover, we highlight the importance of the eco-evolutionary underpinnings of multitrophic BEF relationships. We outline that FAIR data (meeting the standards of findability, accessibility, interoperability, and reusability) and reproducible processing will be key to advance this field of research by making it more integrative. Finally, we show how these BEF insights may be implemented for ecosystem management, society, and policy. Given that human well-being critically depends on the multiple services provided by diverse, multitrophic communities, integrating the approaches of evolutionary ecology, community ecology, and ecosystem ecology in future BEF research will be key to refine conservation targets and develop sustainable management strategies.

摘要

对生物多样性前所未有的丧失所带来的功能后果的担忧,促使生物多样性与生态系统功能(BEF)研究成为过去25年中生态研究最活跃的领域之一。数百项实验将生物多样性作为自变量进行了操控,并发现了令人信服的证据,即生态系统的功能随着其生态群落的多样性而增强。这项研究还确定了BEF关系背后的一些机制、关系强度的一些背景依赖性,以及对人类所依赖的各种生态系统服务的影响。在本文中,我们认为,在随机和非随机生物多样性变化情景中对生物相互作用采取多营养级视角,是推动未来BEF研究以及应对其一些最重要的遗留挑战的关键。我们讨论了在空间和时间上对多营养级相互作用进行研究和量化,有助于从小规模生物多样性操控和生态系统功能评估扩大到跨越生态系统边界的与管理相关的空间尺度。我们特别考虑多营养级概念框架,以理解和预测BEF关系的背景依赖性。此外,我们强调了多营养级BEF关系的生态进化基础的重要性。我们概述了FAIR数据(符合可发现性、可访问性、互操作性和可重用性标准)和可重复处理将是通过使其更具综合性来推动这一研究领域发展的关键。最后,我们展示了这些BEF见解如何应用于生态系统管理、社会和政策。鉴于人类福祉严重依赖于多样的多营养级群落提供的多种服务,在未来的BEF研究中整合进化生态学、群落生态学和生态系统生态学的方法,将是完善保护目标和制定可持续管理策略的关键。

相似文献

1
A multitrophic perspective on biodiversity-ecosystem functioning research.
Adv Ecol Res. 2019;61:1-54. doi: 10.1016/bs.aecr.2019.06.001. Epub 2019 Jul 23.
2
Establishing causal links between aquatic biodiversity and ecosystem functioning: Status and research needs.
Sci Total Environ. 2019 Mar 15;656:1145-1156. doi: 10.1016/j.scitotenv.2018.11.413. Epub 2018 Nov 28.
3
Scaling-up biodiversity-ecosystem functioning research.
Ecol Lett. 2020 Apr;23(4):757-776. doi: 10.1111/ele.13456. Epub 2020 Jan 29.
4
Energy Flux: The Link between Multitrophic Biodiversity and Ecosystem Functioning.
Trends Ecol Evol. 2018 Mar;33(3):186-197. doi: 10.1016/j.tree.2017.12.007. Epub 2018 Jan 8.
5
Biodiversity and ecosystem functioning in dynamic landscapes.
Philos Trans R Soc Lond B Biol Sci. 2016 May 19;371(1694). doi: 10.1098/rstb.2015.0267.
6
Trait-based approaches for understanding microbial biodiversity and ecosystem functioning.
Front Microbiol. 2014 May 27;5:251. doi: 10.3389/fmicb.2014.00251. eCollection 2014.
7
Biodiversity and ecosystem functioning in naturally assembled communities.
Biol Rev Camb Philos Soc. 2019 Aug;94(4):1220-1245. doi: 10.1111/brv.12499. Epub 2019 Feb 6.
8
Wetland habitats supporting waterbird diversity: Conservation perspective on biodiversity-ecosystem functioning relationship.
J Environ Manage. 2024 Apr;357:120663. doi: 10.1016/j.jenvman.2024.120663. Epub 2024 Mar 28.
9
Trait-based food web model reveals the underlying mechanisms of biodiversity-ecosystem functioning relationships.
J Anim Ecol. 2020 Jun;89(6):1497-1510. doi: 10.1111/1365-2656.13207. Epub 2020 Apr 2.
10
Toward a methodical framework for comprehensively assessing forest multifunctionality.
Ecol Evol. 2017 Nov 6;7(24):10652-10674. doi: 10.1002/ece3.3488. eCollection 2017 Dec.

引用本文的文献

2
Functional redundancy compensates for decline of dominant ant species.
Nat Ecol Evol. 2025 May;9(5):779-788. doi: 10.1038/s41559-025-02690-y. Epub 2025 Apr 22.
3
Research needs on the biodiversity-ecosystem functioning relationship in drylands.
NPJ Biodivers. 2024 Jun 5;3(1):12. doi: 10.1038/s44185-024-00046-6.
4
Reconsidering functional redundancy in biodiversity research.
NPJ Biodivers. 2023 Apr 27;2(1):9. doi: 10.1038/s44185-023-00015-5.
5
Disturbance theory for ecosystem ecologists: A primer.
Ecol Evol. 2024 May 30;14(6):e11403. doi: 10.1002/ece3.11403. eCollection 2024 Jun.
6
Biodiversity mitigates drought effects in the decomposer system across biomes.
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2313334121. doi: 10.1073/pnas.2313334121. Epub 2024 Mar 18.
9
The heterogeneity-diversity-system performance nexus.
Natl Sci Rev. 2023 Apr 24;10(7):nwad109. doi: 10.1093/nsr/nwad109. eCollection 2023 Jul.

本文引用的文献

2
Evolution of interdisciplinarity in biodiversity science.
Ecol Evol. 2019 Jul 4;9(12):6744-6755. doi: 10.1002/ece3.5244. Epub 2019 Jun 10.
3
Multiple plant diversity components drive consumer communities across ecosystems.
Nat Commun. 2019 Mar 29;10(1):1460. doi: 10.1038/s41467-019-09448-8.
4
Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands.
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6187-6192. doi: 10.1073/pnas.1807354116. Epub 2019 Mar 8.
5
Biodiversity and ecosystem functioning in naturally assembled communities.
Biol Rev Camb Philos Soc. 2019 Aug;94(4):1220-1245. doi: 10.1111/brv.12499. Epub 2019 Feb 6.
6
Recognizing the quiet extinction of invertebrates.
Nat Commun. 2019 Jan 3;10(1):50. doi: 10.1038/s41467-018-07916-1.
7
The Future of Complementarity: Disentangling Causes from Consequences.
Trends Ecol Evol. 2019 Feb;34(2):167-180. doi: 10.1016/j.tree.2018.10.013. Epub 2018 Dec 4.
8
Plant diversity maintains multiple soil functions in future environments.
Elife. 2018 Nov 28;7:e41228. doi: 10.7554/eLife.41228.
9
Intensification for redesigned and sustainable agricultural systems.
Science. 2018 Nov 23;362(6417). doi: 10.1126/science.aav0294.
10
A niche for ecosystem multifunctionality in global change research.
Glob Chang Biol. 2019 Mar;25(3):763-774. doi: 10.1111/gcb.14528. Epub 2018 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验