School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv, Israel.
Am J Phys Anthropol. 2020 Apr;171(4):683-703. doi: 10.1002/ajpa.24003. Epub 2020 Jan 8.
The ability to accurately estimate bite force (BF) in extant and fossil primates is valuable to biological anthropologists. BF is generally evaluated using complex jaw musculature and lever arm analyses employing numerous assumptions and requiring complete cranial morphology. Here, a simple method to determine BF from data measured on histological sections of fossil teeth is proposed.
Published sections of molar teeth encompassing 27 different extinct and extant primates dating back to as early as 17 million years ago were examined. Focusing on the cusp region, the extracted data include characteristic enamel thickness d and dentin horn angle φ. The occlusal force needed to fracture a cusp, P , was determined from these variables with the aid of a finite element stress analysis similarly to a previous study on postcanine human teeth. The bite force was obtained by linking BF to P using a universal constant.
The measured variables d and φ are conclusively linked. This link produces a virtually constant fracture force P and in turn bite force BF for all cusps in the molar row. An explicit formula tying BF to d and φ was derived. For nonhominin taxa the bite force, molar crown area, and body mass are found to be intimately related. The case of hominins is more involved. The so determined BF is gender-averaged, with the bite force of males estimated to be ≈12% greater than that of females.
The use of "fracture mechanics" concepts from mechanics of materials facilitates determination of critical bite force in primates based on characteristic enamel thickness d and dentin horn angle φ as extracted from histological sections of molar teeth. This novel approach enables quantitative insight into the role played by crown area, body mass and bite force on evolutionary trends. The conclusive link between cuspal enamel thickness and dentin horn angle facilitates optimal food processing without hindering cusp resilience. The proposed approach may be extended to mammals having asymmetric cusp structures.
准确估计现存和化石灵长类动物的咬合力(BF)对生物人类学家具有重要价值。BF 通常通过复杂的颌肌和杠杆臂分析进行评估,这些分析采用了许多假设,并且需要完整的颅骨形态。这里提出了一种从化石牙齿组织学切片上测量的数据来确定 BF 的简单方法。
检查了早至 1700 万年前的 27 种不同灭绝和现存灵长类动物的臼齿切片。在牙尖区域,提取了包括特征性牙釉质厚度 d 和牙本质角 φ 的数据。借助有限元应力分析,根据这些变量确定了破坏牙尖所需的咬合力 P ,类似于以前对人后牙的研究。通过使用通用常数将 BF 与 P 联系起来,得到了咬合力。
所测量的变量 d 和 φ 具有明确的联系。这种联系产生了几乎恒定的断裂力 P ,并依次产生了整个臼齿列中所有牙尖的咬合力 BF 。导出了一个将 BF 与 d 和 φ 联系起来的显式公式。对于非人类分类群,发现咬合力、磨牙冠面积和体重密切相关。人类的情况更为复杂。如此确定的 BF 是性别平均的,男性的咬合力估计比女性大 12%左右。
从材料力学的“断裂力学”概念出发,利用从臼齿组织学切片中提取的特征牙釉质厚度 d 和牙本质角 φ 来确定灵长类动物的临界咬合力。这种新方法使我们能够定量了解冠面积、体重和咬合力在进化趋势中所起的作用。牙尖牙釉质厚度与牙本质角之间的明确联系促进了最佳的食物加工,而不会影响牙尖的弹性。提出的方法可以扩展到具有不对称牙尖结构的哺乳动物。