Suppr超能文献

植物体内新表观遗传标记的证据。

Evidence for novel epigenetic marks within plants.

作者信息

Mahmood Asaad M, Dunwell Jim M

机构信息

Department of Biology, College of Education, University of Garmian, Kalar, KRG/Iraq.

School of School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK.

出版信息

AIMS Genet. 2019 Dec 24;6(4):70-87. doi: 10.3934/genet.2019.4.70. eCollection 2019.

Abstract

Variation in patterns of gene expression can result from modifications in the genome that occur without a change in the sequence of the DNA; such modifications include methylation of cytosine to generate 5-methylcytosine (5mC) resulting in the generation of heritable epimutation and novel epialleles. This type of non-sequence variation is called epigenetics. The enzymes responsible for generation of such DNA modifications in mammals are named DNA methyltransferases (DNMT) including DNMT1, DNMT2 and DNMT3. The later stages of oxidations to these modifications are catalyzed by Ten Eleven Translocation (TET) proteins, which contain catalytic domains belonging to the 2-oxoglutarate dependent dioxygenase family. In various mammalian cells/tissues including embryonic stem cells, cancer cells and brain tissues, it has been confirmed that these proteins are able to induce the stepwise oxidization of 5-methyl cytosine to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and finally 5-carboxylcytosine (5caC). Each stage from initial methylation until the end of the DNA demethylation process is considered as a specific epigenetic mark that may regulate gene expression. This review discusses controversial evidence for the presence of such oxidative products, particularly 5hmC, in various plant species. Whereas some reports suggest no evidence for enzymatic DNA demethylation, other reports suggest that the presence of oxidative products is followed by the active demethylation and indicate the contribution of possible TET-like proteins in the regulation of gene expression in plants. The review also summarizes the results obtained by expressing the human TET conserved catalytic domain in transgenic plants.

摘要

基因表达模式的变化可能源于基因组修饰,而这种修饰并不改变DNA序列;此类修饰包括胞嘧啶甲基化生成5-甲基胞嘧啶(5mC),从而导致可遗传的表观突变和新的表观等位基因的产生。这种非序列变异被称为表观遗传学。在哺乳动物中负责产生此类DNA修饰的酶被称为DNA甲基转移酶(DNMT),包括DNMT1、DNMT2和DNMT3。这些修饰的后期氧化阶段由十一易位(TET)蛋白催化,TET蛋白含有属于2-氧戊二酸依赖性双加氧酶家族的催化结构域。在包括胚胎干细胞、癌细胞和脑组织在内的各种哺乳动物细胞/组织中,已证实这些蛋白能够诱导5-甲基胞嘧啶逐步氧化为5-羟甲基胞嘧啶(5hmC)、5-甲酰基胞嘧啶(5fC),最终生成5-羧基胞嘧啶(5caC)。从初始甲基化到DNA去甲基化过程结束的每个阶段都被视为一个特定的表观遗传标记,可能调控基因表达。本综述讨论了各种植物物种中此类氧化产物,尤其是5hmC存在的有争议证据。一些报告表明没有酶促DNA去甲基化的证据,而其他报告则表明氧化产物的存在之后是主动去甲基化,并指出可能存在的类TET蛋白在植物基因表达调控中的作用。本综述还总结了通过在转基因植物中表达人类TET保守催化结构域所获得 的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcec/6949463/a27d9096eb0e/genetics-06-04-070-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验