Suppr超能文献

聚合物网络的压致多孔弹性:理论与实验。

Poroelasticity of (bio)polymer networks during compression: theory and experiment.

机构信息

AMOLF, Theory of Biomolecular Matter, Science Park 104, 1098XG Amsterdam, The Netherlands.

出版信息

Soft Matter. 2020 Feb 7;16(5):1298-1305. doi: 10.1039/c9sm01973a. Epub 2020 Jan 10.

Abstract

Soft living tissues like cartilage can be considered as biphasic materials comprising a fibrous complex biopolymer network and a viscous background liquid. Here, we show by a combination of experiment and theoretical analysis that both the hydraulic permeability and the elastic properties of (bio)polymer networks can be determined with simple ramp compression experiments in a commercial rheometer. In our approximate closed-form solution of the poroelastic equations of motion, we find the normal force response during compression as a combination of network stress and fluid pressure. Choosing fibrin as a biopolymer model system with controllable pore size, measurements of the full time-dependent normal force during compression are found to be in excellent agreement with the theoretical calculations. The inferred elastic response of large-pore (μm) fibrin networks depends on the strain rate, suggesting a strong interplay between network elasticity and fluid flow. Phenomenologically extending the calculated normal force into the regime of nonlinear elasticity, we find strain-stiffening of small-pore (sub-μm) fibrin networks to occur at an onset average tangential stress at the gel-plate interface that depends on the polymer concentration in a power-law fashion. The inferred permeability of small-pore fibrin networks scales approximately inverse squared with the fibrin concentration, implying with a microscopic cubic lattice model that the number of protofibrils per fibrin fiber cross-section decreases with protein concentration. Our theoretical model provides a new method to obtain the hydraulic permeability and the elastic properties of biopolymer networks and hydrogels with simple compression experiments, and paves the way to study the relation between fluid flow and elasticity in biopolymer networks during dynamical compression.

摘要

软组织如软骨可被视为两相材料,包括纤维状复杂生物聚合物网络和粘性背景液体。在这里,我们通过实验和理论分析相结合的方法表明,在商业流变仪中进行简单的斜坡压缩实验即可确定(生物)聚合物网络的液压渗透率和弹性特性。在我们对多孔弹性运动方程的近似封闭解中,我们发现压缩过程中的法向力响应是网络应力和流体压力的组合。选择纤维蛋白作为具有可控孔径的生物聚合物模型系统,发现压缩过程中法向力的全时变测量与理论计算非常吻合。大孔(μm)纤维蛋白网络的推断弹性响应取决于应变率,表明网络弹性和流体流动之间存在强烈的相互作用。在对计算出的法向力进行扩展,推断出小孔(亚微米)纤维蛋白网络的应变硬化发生在凝胶板界面上的平均切向应力的起始处,该起始处与聚合物浓度呈幂律关系。推断出的小孔纤维蛋白网络的渗透率与纤维蛋白浓度大致呈平方反比关系,这意味着根据微观立方晶格模型,每个纤维蛋白纤维横截面的原纤维数量随蛋白质浓度的增加而减少。我们的理论模型为通过简单的压缩实验获得生物聚合物网络和水凝胶的液压渗透率和弹性特性提供了一种新方法,并为研究在动态压缩过程中生物聚合物网络中的流体流动和弹性之间的关系铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验