Suppr超能文献

应用 Pentra 评分模型准确预测慢性丙型肝炎患者的显著肝纤维化。

Accurate prediction of significant liver fibrosis using the Pentra score model in patients with chronic hepatitis C.

机构信息

Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wrocław, Poland.

Department of Infectious Diseases and Hepatology, Wroclaw Medical University, Wrocław, Poland

出版信息

Pol Arch Intern Med. 2020 Feb 27;130(2):112-120. doi: 10.20452/pamw.15134. Epub 2020 Jan 10.

Abstract

INTRODUCTION

Noninvasive methods are increasingly used in the clinical assessment of patients with chronic hepatitis C (CHC).

OBJECTIVES

We aimed to develop a predictive model for the evaluation of significant fibrosis in patients with CHC, based on serum biomarkers. We compared the accuracy of our model in detecting significant fibrosis with currently known markers / models of fibrosis (such as the aspartate aminotransferase to platelet ratio index [APRI], the Fibrosis‑4 [FIB-4] score, and the Forns index).

PATIENTS AND METHODS

A total of 242 patients with CHC not receiving antiviral treatment were divided into 2 groups: training group (n = 150) and validation group (n = 92). Significant fibrosis was defined as F2 or higher on the Meta‑analysis of Histological Data in Viral Hepatitis (METAVIR) scale.

RESULTS

Multivariable analysis revealed that age (P <0.001), pentraxin 3 (PTX3) levels (P = 0.009), γ‑glutamyl transpeptidase (GGT) to platelet count (PLT) ratio (P = 0.08), and hyaluronic acid levels (HA) (P = 0.07) were independent predictors of significant fibrosis. Based on that, we developed a model for predicting significant fibrosis: Pentra score = 0.176 × PTX3 (ng/ml) + 0.522 × HA (ng/ml) + 0.29 × GGT (IU/l) to PLT (×109/l) ratio + 0.14 × age (years) - 3.9346. Then, we compared our model with the biomarkers and models currently used to predict liver fibrosis. The Pentra score yielded the largest area under the receiver operating characteristic curve for predicting significant fibrosis in the training and validation groups (0.894 and 0.867, respectively). It also had the highest diagnostic accuracy in both groups (90.6% and 87.0%, respectively).

CONCLUSIONS

Our model for detecting significant fibrosis in patients with CHC using pentraxin 3 and other serum biomarkers compares well with the existing and previously published indices. However, further validation in larger cohorts is needed.

摘要

简介

非侵入性方法在慢性丙型肝炎(CHC)患者的临床评估中越来越多地被使用。

目的

我们旨在基于血清生物标志物为 CHC 患者建立用于评估显著纤维化的预测模型。我们比较了我们的模型在检测显著纤维化方面的准确性与当前已知的纤维化标志物/模型(如天门冬氨酸氨基转移酶与血小板比值指数[APRI]、纤维化-4 [FIB-4] 评分和 Forns 指数)。

患者和方法

共纳入 242 名未接受抗病毒治疗的 CHC 患者,分为 2 组:训练组(n = 150)和验证组(n = 92)。显著纤维化定义为 Meta-分析中病毒性肝炎的组织学数据(METAVIR)量表的 F2 或更高。

结果

多变量分析显示,年龄(P <0.001)、五聚素 3(PTX3)水平(P = 0.009)、γ-谷氨酰转肽酶(GGT)与血小板计数(PLT)比值(P = 0.08)和透明质酸水平(HA)(P = 0.07)是显著纤维化的独立预测因子。在此基础上,我们开发了一种预测显著纤维化的模型:Pentra 评分=0.176×PTX3(ng/ml)+0.522×HA(ng/ml)+0.29×GGT(IU/l)/PLT(×109/l)比值+0.14×年龄(岁)-3.9346。然后,我们比较了我们的模型与目前用于预测肝纤维化的生物标志物和模型。在训练组和验证组中,Pentra 评分预测显著纤维化的受试者工作特征曲线下面积最大(分别为 0.894 和 0.867)。在两组中,它的诊断准确性也最高(分别为 90.6%和 87.0%)。

结论

我们使用五聚素 3 和其他血清生物标志物检测 CHC 患者显著纤维化的模型与现有和以前发表的指数相比表现良好。但是,需要在更大的队列中进一步验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验